Home/Class 11/Maths/

Question and Answer

if\( (3,-4),(-6,5)\) are the exterimities of the diagonal of the parallelogram and \( (-2,-1)\) is it's third vertex then find fourth vertex.

Answer

Using property that diagonals of a parallelogram bisects each other, we can say that the midpoint of the diagonals of a parallelogram is same.
Let the fourth vertex be \((x,y)\).
Now using mid-point formula .
\(\begin{array}{l}\frac{(3,-4)+(-6,5)\ }{2}=\frac{(-2,-1)+\left(x,y\right)}{2}\\\Rightarrow (3,-4)+(-6,5)\ =(-2,-1)+\left(x,y\right)\\\Rightarrow \left(3+\left(-6\right),-4+5\right)=\left(-2+x,-1+y\right)\\\Rightarrow \left(-3,1\right)=\left(-2+x,-1+y\right)\\\Rightarrow -3=-2+x,1=-1+y\\\Rightarrow -3+2=x,1+1=+y\\\Rightarrow x=-1,y=2\end{array}\)
Answer: The fourth vertex is \((-1,2)\)
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct27
Incorrect0
Watch More Related Solutions
State whether the given statement is True or False:
The central angle of the sectors in a pie chart will be a fraction of \(360^{\circ }\). ___
If \( cosA+cosB+cosC=0\), \( sinA+sinB+sinC=0\) and \( A+B+C={180}^{0}\), then the value of \( cos3A+cos3B+cos3C\) is
Find the equation of the smallest circle passing through the intersection of the line \( x+y=1 \)and the circle \( {x}^{2}+{y}^{2}=9\)
If \( \frac{1}{\sqrt{b}+\sqrt{c}}\)\( \frac{1}{\sqrt{c}+\sqrt{a}}\), \( \frac{1}{\sqrt{a}+\sqrt{b}}\) are in A.P., then \( {9}^{ax-1}\), \( {9}^{bx-1}\), \( {9}^{cx-1}\) \( (x\ne\;0)\) are in
a.A.P.
b.G.P.
c.H.P.
d.none of these
Find the general solution for  the following equation: \( sinx+sin3x+sin5x=0\)
Three numbers form an increasing G.P. If the middle number is doubled, then the new numbers are in A.P. The common ratio of the G.P. is
a.\( 2-\sqrt{3}\)
b.\( 2+\sqrt{3}\)
c.\( \sqrt{3}-2  \)
d.\( 3+\sqrt{2}\)
If \( tan\left(7{x}^{°}\right)-\frac{sin{ x}^{°}cos{ y}^{°}+cos{ x}^{°}sin{ y}^{°}}{cos{ x}^{°}cos{ y}^{°}-sin{ x}^{°}sin{ y}^{°}}\) where \( x+y={134}^{°}\), then the least positive integral value of x, is-
A.\( {122}^{°}\)
B.\(  {172}^{°}\)
C.\( {100}^{°}\)
D.\( {132}^{°}\)
Evaluate the limit: \( \underset{h\xrightarrow{}\;0}{lim}⌈\frac{1}{h\sqrt[3]{8+h}}-\frac{1}{2h}⌉\)
If the line \( lx+my+n=0\) cuts the ellipse \( \left(\frac{{x}^{2}}{{a}^{2}}\right)+\left(\frac{{y}^{2}}{{b}^{2}}\right)=1\) at points whose eccentric angles differ by \( \frac{\pi }{2}\), then find the value of \( \frac{{a}^{2}{l}^{2}+{b}^{2}{m}^{2}}{{n}^{2}}\).
Let \( {S}_{n} \)denote the sum of first \( n \)terms of an A.P. If \( {S}_{2n}=3{S}_{n}, \)then find the ratio \( {S}_{3n}/{S}_{n}\).

Load More