Home/Class 12/Maths/

Question and Answer

Which of the following is correct
  • Determinant is a number associated to a square matrix.
  • None of these
  • Determinant is a number associated to a matrix.
  • Determinant is a square matrix
loading
settings
Speed
00:00
01:40
fullscreen
Which of the following is correct
  • Determinant is a number associated to a square matrix.
  • None of these
  • Determinant is a number associated to a matrix.
  • Determinant is a square matrix

Answer

The determinant is an operation that we perform on arranged numbers. A square matrix is a set of arranged numbers. We perform some operations on a matrix and we get a value that value is called as a determinant of that matrix hence a determinant is a number associated to a square matrix.
Therefore the choice is: A
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct4
Incorrect0
Watch More Related Solutions
If \(\left|\begin{array}{cc} {x} & {2} \\ {18} & {x} \end{array}\right|=\left|\begin{array}{cc} {6} & {2} \\ {18} & {6} \end{array}\right|\) , then x is equal to
  • \(\pm\)6
  • 0
  • -6
  • 6
Find minors and cofactors of all the elements of the determinant \(\left| {\begin{array}{*{20}{c}} 1&{ - 2} \\ 4&3 \end{array}} \right|\)
Find adjoint of the matrix \(\left[ {\begin{array}{*{20}{c}} 1&2 \\ 3&4 \end{array}} \right]\)
Evaluate \(\left|\begin{array}{cc} {x} & {x+1} \\ {x-1} & {x} \end{array}\right|\)
Evaluate: \(\left| {\begin{array}{*{20}{c}} x&y&{x + y} \\ y&{x + y}&x \\ {x+ y}&x&y \end{array}} \right|\)
If  \(\Delta=\left|\begin{array}{lll} {a_{11}} & {a_{12}} & {a_{13}} \\ {a_{21}} & {a_{22}} & {a_{23}} \\ {a_{31}} & {a_{32}} & {a_{33}} \end{array}\right|\) and Aij is Cofactors of aij, then the value of \(\Delta\) is given by
  • a11 A31 + a12 A32 + a13 A33
  • a21 A11 + a22 A12 + a23 A13
  • a11 A11 + a21 A21 + a31 A31
  • a11 A11 + a12 A21 + a13 A31
Using the property of determinant and without expanding prove that \(\left| {\begin{array}{*{20}{c}} 0&a&{ - b} \\ { - a}&0&{ - c} \\ b&c&0 \end{array}} \right| = 0\)
If \(A = \left[ {\begin{array}{*{20}{c}} 1&1&{ - 2} \\ 2&1&{ - 3} \\ 5&4&9 \end{array}} \right]\) find |A|.
Solve the system of linear equation, using matrix method \(2x + y + z = 1; x - 2y - z = \frac{3}{2};\,\,3y - 5z = 9\)
Find the inverse of the matrix (if it exists) given \(\left[ {\begin{array}{*{20}{c}} 2&{ - 2} \\ 4&3 \end{array}} \right]\)

Load More