At a point \( P\) on the ellipse \( \frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1\) tangent \( PQ\) is drawn. If the point \( Q\) be at a distance \( \frac{1}{P}\) from the point \( P\), where '\( P'\) is distance of the tangent from the origin, then the locus of the point \( Q \)is
( )
A. \( \frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1+\frac{1}{{a}^{2}{b}^{2}}\)
B. \( \frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1-\frac{1}{{a}^{2}{b}^{2}}\)
C. \( \frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=\frac{1}{{a}^{2}{b}^{2}}\)
D. \( \frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=\frac{1}{{a}^{2}{b}^{2}}\)