Three resonant frequencies of a string are 90, 150 and 210 Hz. (a) Find the highest possible fundamental frequency of vibration of this string. (b) Which harmonics of the fundamental are the given frequencies ? (c) Which overtones are these frequencies ? (d) If the length of the string is 80 cm, what would be the speed of a transverse wave on this string ?

The resoN/Ant frequencies of a string are

\({{f}_{{1}}=}{90}{H}{z}\)

\({{f}_{{2}}=}{150}{H}{z}\)

\({{f}_{{3}}=}{210}{H}{z}\)

a. The highest possible fundamental frequency of the string is

\({f}={30}{H}{z}\)

[because \({{f}_{{1}},}{{f}_{{2}}{\quad\text{and}\quad}}{{f}_{{3}}}\) are integral multiples of \({30}{H}{z}\)]

b. The frequencies are

\({{f}_{{1}}=}{3}{f}\)

\({{f}_{{2}}=}{5}{f}\)

\({{f}_{{3}}=}{7}{f}\)

so, \({{f}_{{1}},}{{f}_{{2}}}\) and \({{f}_{{3}}}\) are 3rd harmonic, \({5}\)th harmonic and \({7}\)th harmonic respectively.

c. The frequecy in the string are \({f},{2}{f},{3}{f},{4}{f},{5}{f},\).........

So, \({3}{f}={2}\)nd overtone and \({3}{r}{d}{h}{a}{r}{m}{o}{n}{i}{c}\)

\({5}{f}={4}\)th overtone and \({5}{t}{h}{h}{a}{r}{m}{o}{n}{i}{c}\) l \({7}{t}{h}={6}{t}{h}\) overteone and 7th harmonic.

d. Length of the string is

\({L}={80}{c}{m}\)

\(\rightarrow{{f}_{{1}}=}{\left(\frac{{3}}{{2}}\right)}{v}\)

(v=velocity of the wave)

\(\rightarrow{90}={\left\lbrace\frac{{3}}{{{2}\times{80}}}\right\rbrace}\times{K}\)

\(={30}\times{2}\times{80}\)

\(={4800}\frac{{{c}{m}}}{{\sec{}}}\)

\(={48}\frac{{m}}{{s}}\)

\({{f}_{{1}}=}{90}{H}{z}\)

\({{f}_{{2}}=}{150}{H}{z}\)

\({{f}_{{3}}=}{210}{H}{z}\)

a. The highest possible fundamental frequency of the string is

\({f}={30}{H}{z}\)

[because \({{f}_{{1}},}{{f}_{{2}}{\quad\text{and}\quad}}{{f}_{{3}}}\) are integral multiples of \({30}{H}{z}\)]

b. The frequencies are

\({{f}_{{1}}=}{3}{f}\)

\({{f}_{{2}}=}{5}{f}\)

\({{f}_{{3}}=}{7}{f}\)

so, \({{f}_{{1}},}{{f}_{{2}}}\) and \({{f}_{{3}}}\) are 3rd harmonic, \({5}\)th harmonic and \({7}\)th harmonic respectively.

c. The frequecy in the string are \({f},{2}{f},{3}{f},{4}{f},{5}{f},\).........

So, \({3}{f}={2}\)nd overtone and \({3}{r}{d}{h}{a}{r}{m}{o}{n}{i}{c}\)

\({5}{f}={4}\)th overtone and \({5}{t}{h}{h}{a}{r}{m}{o}{n}{i}{c}\) l \({7}{t}{h}={6}{t}{h}\) overteone and 7th harmonic.

d. Length of the string is

\({L}={80}{c}{m}\)

\(\rightarrow{{f}_{{1}}=}{\left(\frac{{3}}{{2}}\right)}{v}\)

(v=velocity of the wave)

\(\rightarrow{90}={\left\lbrace\frac{{3}}{{{2}\times{80}}}\right\rbrace}\times{K}\)

\(={30}\times{2}\times{80}\)

\(={4800}\frac{{{c}{m}}}{{\sec{}}}\)

\(={48}\frac{{m}}{{s}}\)

To Keep Reading This Answer, Download the App

4.6

Review from Google Play

To Keep Reading This Answer, Download the App

4.6

Review from Google Play

Correct39

Incorrect0

Still Have Question?

Load More

More Solution Recommended For You