Answer: A
Consider the points be \(P\left(-1, 2, 3\right)\) and \(Q\left(1, 0, 4\right)\)
Now,\({\cos}^{2}{\alpha}+{\cos}^{2}{\beta}+{\cos}^{2}{\gamma}=1\)
\(3{\cos}^{2}{\alpha}=1\) since \(\alpha=\beta=\gamma\)
\(\Rightarrow\,\cos{\alpha}=\dfrac{1}{\sqrt{3}}\)
Then,\(\vec{v}=L\left(\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}}\right)\)
\(\vec{u}=\vec{PQ}=\vec{OQ}-\vec{OP}\)
\(=\left(\hat{i}+4\hat{k}\right)-\left(-\hat{i}+2\hat{j}+3\hat{k}\right)=-2\hat{j}+\hat{k}\)
\(\vec{u}=\left(0,-2,1\right)\)
Now,\(\left|\vec{u}\right|\cos{\theta}=\left|\vec{u}\right|\dfrac{\left(\vec{u}.\vec{v}\right)}{\left|\vec{u}\right|\left|\vec{v}\right|}\)
\(=\dfrac{0\times\dfrac{1}{\sqrt{3}}-2\times\dfrac{1}{\sqrt{3}}+1\times\dfrac{1}{\sqrt{3}}}{\sqrt{\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}}}\)
\(=\dfrac{-\dfrac{2}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}}{\sqrt{\dfrac{3}{3}}}\)
\(=-\dfrac{1}{\sqrt{3}}\)
Hence the projection is \(-\dfrac{1}{\sqrt{3}}\)