Home/Class 8/Maths/

Question and Answer

State whether the given statement is True or False:
The central angle of the sectors in a pie chart will be a fraction of \(360^{\circ }\). ___
loading
settings
Speed
00:00
04:14
fullscreen

Question

State whether the given statement is True or False:
The central angle of the sectors in a pie chart will be a fraction of \(360^{\circ }\). ___

Answer

To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

Pie chart is a type of graph in which a circle is divided into sectors such that each represent a proportion of the whole. Center of circle is point and we know that the sum of angles around a point is equal to \(360^{\circ}\).
So, the given statement is true.
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct26
Incorrect0
Watch More Related Solutions
If \( cosA+cosB+cosC=0\), \( sinA+sinB+sinC=0\) and \( A+B+C={180}^{0}\), then the value of \( cos3A+cos3B+cos3C\) is
Find the equation of the smallest circle passing through the intersection of the line \( x+y=1 \)and the circle \( {x}^{2}+{y}^{2}=9\)
If \( \frac{1}{\sqrt{b}+\sqrt{c}}\)\( \frac{1}{\sqrt{c}+\sqrt{a}}\), \( \frac{1}{\sqrt{a}+\sqrt{b}}\) are in A.P., then \( {9}^{ax-1}\), \( {9}^{bx-1}\), \( {9}^{cx-1}\) \( (x\ne\;0)\) are in
a.A.P.
b.G.P.
c.H.P.
d.none of these
Find the general solution for  the following equation: \( sinx+sin3x+sin5x=0\)
Three numbers form an increasing G.P. If the middle number is doubled, then the new numbers are in A.P. The common ratio of the G.P. is
a.\( 2-\sqrt{3}\)
b.\( 2+\sqrt{3}\)
c.\( \sqrt{3}-2  \)
d.\( 3+\sqrt{2}\)
If \( tan\left(7{x}^{°}\right)-\frac{sin{ x}^{°}cos{ y}^{°}+cos{ x}^{°}sin{ y}^{°}}{cos{ x}^{°}cos{ y}^{°}-sin{ x}^{°}sin{ y}^{°}}\) where \( x+y={134}^{°}\), then the least positive integral value of x, is-
A.\( {122}^{°}\)
B.\(  {172}^{°}\)
C.\( {100}^{°}\)
D.\( {132}^{°}\)
Evaluate the limit: \( \underset{h\xrightarrow{}\;0}{lim}⌈\frac{1}{h\sqrt[3]{8+h}}-\frac{1}{2h}⌉\)
If the line \( lx+my+n=0\) cuts the ellipse \( \left(\frac{{x}^{2}}{{a}^{2}}\right)+\left(\frac{{y}^{2}}{{b}^{2}}\right)=1\) at points whose eccentric angles differ by \( \frac{\pi }{2}\), then find the value of \( \frac{{a}^{2}{l}^{2}+{b}^{2}{m}^{2}}{{n}^{2}}\).
Let \( {S}_{n} \)denote the sum of first \( n \)terms of an A.P. If \( {S}_{2n}=3{S}_{n}, \)then find the ratio \( {S}_{3n}/{S}_{n}\).
If the sides of a triangle are in G.P., and its largest angle is twice the smallest, then the common
ratio \( r\) satisfies the inequality
a.\( 0\lt r\lt \sqrt{2}\)
b.\( 1\lt r\lt \sqrt{2} \)
c.\( 1\lt r\lt 2\)
d.none of these

Load More