Home/Class 9/Maths/

Question and Answer

State whether the following statement is true or false. Give reasons for your answer:
Every natural number is a whole number.___
loading
settings
Speed
00:00
02:02
fullscreen

Question

State whether the following statement is true or false. Give reasons for your answer:
Every natural number is a whole number.___

Answer

To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

Since, whole numbers are defined as  \(0,1,2,3,4,5 \ldots\)
And, natural numbers are defined as \(1,2,3,4,5 \ldots\)
Here, we can say that every natural number lies in the set of whole numbers.
Therefore, yes, every natural number is a whole number.
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct18
Incorrect0
Watch More Related Solutions
\(\int \frac{\sin \frac{5 x}{2}}{\sin \frac{x}{2}} d x \text { is equal to }\) (where, \(C\) is a constant of integration)( )
A. \(2x+\sin x+2\sin 2x+C\)
B. \(x+2\sin x+2\sin 2x+C\)
C. \(x+2\sin x+\sin 2x+C\)
D. \(2x+\sin x+\sin 2x+C\)
State whether the following statement is true or false. Give reason for your answer:
Every integer is a whole number___
State whether the following statement is true or false. Give reason for your answer.
Every rational number is a whole number.___
The integral \(\int \frac {3x^{13}+2x^{11}}{(2x^{4}+3x^{2}+1)^{4}}\;dx\) is equal to (where \(C\) is a constant of integration)( )
A. \(\frac {x^{4}}{6(2x^{4}+3x^{2}+1)^{3}}+C\)
B. \(\frac {x^{12}}{6(2x^{4}+3x^{2}+1)^{3}}+C\)
C. \(\frac {x^{4}}{(2x^{4}+3x^{2}+1)^{3}}+C\)
D. \(\frac {x^{2}}{(2x^{4}+3x^{2}+1)^{3}}+C\)
If \(\int \frac{x+1}{\sqrt{2 x-1}} d x=f(x) \sqrt{2 x-1}+C\) where C is a
constant of integration, then \(f(x)\) is equal to( )
A.  \(\frac {2}{3}(x+2)\)
B.  \(\frac {1}{3}(x+4)\)
C. \(\frac {2}{3}(x-4)\) 
D.  \(\frac {1}{3}(x+1)\)
Locate \(\sqrt {2}\) on the number line.
If \(\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x=A(x)(\sqrt{1-x^{2}})^{m}+C\), for a suitable chosen integer m and a function \(A(x)\), where \(C\) is a constant of integration, then \((A(x))^{m}\) equals( )
A. \(\frac {1}{9x^{4}}\)
B. \(\frac {-1}{3x^{3}}\)
C. \(\frac {-1}{27x^{9}}\)
D. \(\frac {1}{27x^{6}}\)
 Locate \(\sqrt {3}\) on the number line.
Let \(n \geq 2\) be a natural number and \(0<\theta<\frac{\pi}{2} . \text {Then,} \int \frac{\left(\sin ^{n} \theta-\sin \theta\right)^{\frac{1}{n}} \cos \theta}{\sin ^{n+1} \theta} d \theta \text { is equal to }\)
(where \(C\) is a constant of integration)( )
A. \(\frac{n}{n^{2}-1}\left(1-\frac{1}{\sin ^{n+1} \theta}\right)^{\frac{n+1}{n}}+C\)
B. \(\frac{n}{n^{2}-1}\left(1+\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C\)
C. \(\frac{n}{n^{2}-1}\left(1-\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C\)
D. \(\frac{n}{n^{2}+1}\left(1-\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C\)
State whether the given statements is true or false. Justify your answer.
Every irrational number is a real number.___

Load More