Home/Class 12/Maths/

Question and Answer

Solve the system of linear equation, using matrix method \(2x + y + z = 1; x - 2y - z = \frac{3}{2};\,\,3y - 5z = 9\)
loading
settings
Speed
00:00
12:05
fullscreen
Solve the system of linear equation, using matrix method \(2x + y + z = 1; x - 2y - z = \frac{3}{2};\,\,3y - 5z = 9\)

Answer

\(x = 1,y = \frac{1}{2}\) and \(z = -\frac{3}{2}\)
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

Matrix form of given equations is AX = B
\(\Rightarrow \left[ {\begin{array}{*{20}{c}} 2&1&1 \\ 1&{ - 2}&{ - 1} \\ 0&3&{ - 5} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x \\ y \\ z \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1 \\ {\frac{3}{2}} \\ 9 \end{array}} \right]\)
Here \(A = \left[ {\begin{array}{*{20}{c}} 2&1&1 \\ 1&{ - 2}&{ - 1} \\ 0&3&{ - 5} \end{array}} \right],X = \left[ {\begin{array}{*{20}{c}} x \\ y \\ z \end{array}} \right]\)and \(B = \left[ {\begin{array}{*{20}{c}} 1 \\ {\frac{3}{2}} \\ 9 \end{array}} \right]\)
Here,\(A_{11}=13,A_{12}=5,A_{13}=3,\\ A_{21}=8,A_{22}=-10,A_{23}=-6, \\ A_{31}=1,A_{32}=3,A_{33}=-5\)
adj A=\(\left[ {\begin{array}{*{20}{c}} 13&8&1 \\ 5&{ - 10}&{ 3} \\ 3&-6&{ - 5} \end{array}} \right]\)
\(\therefore \left| A \right| = \left| {\begin{array}{*{20}{c}} 2&1&1 \\ 1&{ - 2}&{ - 1} \\ 0&3&{ - 5} \end{array}} \right| \)
\(= 2(10 + 3) - 1(-5)+1(3) = 26 + 5 + 3 \)
\( = 34 \ne 0\)
Therefore, solution is unique and \(X = {A^{ - 1}}B = \frac{1}{{\left| A \right|}}\left( {adj.A} \right)B\)
\(\Rightarrow \left[ {\begin{array}{*{20}{c}} x \\ y \\ z \end{array}} \right] = \frac{1}{{34}}\left[ {\begin{array}{*{20}{c}} {13}&8&1 \\ 5&{ - 10}&3 \\ 3&{ - 6}&{ - 5} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1 \\ {\frac{3}{2}} \\ 9 \end{array}} \right]\)
\(= \frac{1}{{34}}\left[ {\begin{array}{*{20}{c}} {13 + 12 + 9} \\ {5 - 15 + 27} \\ {3 - 9 - 45} \end{array}} \right]\)
\( = \frac{1}{{34}}\left[ {\begin{array}{*{20}{c}} {34} \\ {17} \\ { - 51} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1 \\ {\frac{1}{2}} \\ {\frac{{ - 3}}{2}} \end{array}} \right]\)
Therefore, \(x = 1,y = \frac{1}{2}\) and \(z =- \frac{3}{2}\)
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct45
Incorrect0
Watch More Related Solutions
Find the inverse of the matrix (if it exists) given \(\left[ {\begin{array}{*{20}{c}} 2&{ - 2} \\ 4&3 \end{array}} \right]\)
Verify A (adj. A) = (adj. A) A = |A|:
\(\left[ {\begin{array}{*{20}{c}} 1&{ - 1}&2 \\ 3&0&{ - 2} \\ 1&0&3 \end{array}} \right]\)
Find the inverse of the matrix (if it exists) given \(\left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 0&{\cos \alpha }&{\sin \alpha } \\ 0&{\sin \alpha }&{ - \cos \alpha } \end{array}} \right]\)
Find the equation of the line joining (1, 2) and (3, 6) using determinant.
If  \(A = \left| {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\ 6&0&4 \\ 1&5&{ - 7} \end{array}} \right|,\)Verify that det A = det (A')
Solve the system of linear equation, using matrix method x - y + z = 4; 2x + y - 3z = 0; x + y + z = 2
Solve the system of equations \(\begin{aligned} &2 x+5 y=1\\ &3 x+2 y=7 \end{aligned}\)
By using properties of determinant, show that \(\left| {\begin{array}{*{20}{c}} {x + y + 2z}&x&y \\ z&{y + z + 2x}&y \\ z&x&{z + x + 2y} \end{array}} \right| = 2{\left( {x + y + z} \right)^3}\)
If \(A = \left[ {\begin{array}{*{20}{c}} 1&2 \\ 4&2 \end{array}} \right]\), then show that |2A| = 4|A|
Solve the system of linear equation, using matrix method 2x - y = - 2; 3x + 4y = 3

Load More