Home/Class 12/Maths/

Question and Answer

Solve the system of linear equation, using matrix method 2x - y = - 2; 3x + 4y = 3
loading
settings
Speed
00:00
07:51
fullscreen
Solve the system of linear equation, using matrix method 2x - y = - 2; 3x + 4y = 3

Answer

Matrix form of given equations is AX = B
\(\Rightarrow \left[ {\begin{array}{*{20}{c}} 2&{ - 1} \\ 3&4 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x \\ y \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 2} \\ 3 \end{array}} \right]\)
Here \(A = \left[ {\begin{array}{*{20}{c}} 2&{ - 1} \\ 3&4 \end{array}} \right],X = \left[ {\begin{array}{*{20}{c}} x \\ y \end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}} { - 2} \\ 3 \end{array}} \right]\)
\(\therefore \left| A \right| = \left| {\begin{array}{*{20}{c}} 2&{ - 1} \\ 3&4 \end{array}} \right| \) = 8 - (-3) = 8 + 3 \(= 11 \ne 0\)
Therefore, solution is unique and \(X = {A^{ - 1}}B = \frac{1}{{\left| A \right|}}\left( {adj.A} \right)B\)
\(\Rightarrow \left[ {\begin{array}{*{20}{c}} x \\ y \end{array}} \right] = \frac{1}{{11}}\left[ {\begin{array}{*{20}{c}} 4&1 \\ { - 3}&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} { - 2} \\ 3 \end{array}} \right]\)
\(= \frac{1}{{11}}\left[ {\begin{array}{*{20}{c}} { - 8 + 3} \\ {6 + 6} \end{array}} \right] = \frac{1}{{11}}\left[ {\begin{array}{*{20}{c}} { - 5} \\ {12} \end{array}} \right]\)
\(= \left[ {\begin{array}{*{20}{c}} {\frac{{ - 5}}{{11}}} \\ {\frac{{12}}{{11}}} \end{array}} \right]\)
Therefore, \(x = \frac{{ - 5}}{{11}}\) and \(y = \frac{{12}}{{11}}\)
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct9
Incorrect0
Watch More Related Solutions
Using cofactors of elements of third column, evaluate \(\Delta = \left| {\begin{array}{*{20}{c}} 1&x&{yz} \\ 1&y&{zx} \\ 1&z&{xy} \end{array}} \right|\)
Evaluate the determinant \(\Delta=\left|\begin{array}{rrr} {1} & {2} & {4} \\ {-1} & {3} & {0} \\ {4} & {1} & {0} \end{array}\right|\)
Write minors and cofactors of the element of \(\left| {\begin{array}{*{20}{c}} 1&0&4 \\ 3&5&{ - 1} \\ 0&1&2 \end{array}} \right|\)
Find minors and cofactors of the elements a11, a21 in the determinant \(\Delta=\left|\begin{array}{lll} {a_{11}} & {a_{12}} & {a_{13}} \\ {a_{21}} & {a_{22}} & {a_{23}} \\ {a_{31}} & {a_{32}} & {a_{33}} \end{array}\right|\)
Find minors and cofactors of the elements of the determinant \(\left| {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\ 6&0&4 \\ 1&5&{ - 7} \end{array}} \right|\) Verify that a11A31 + a12A32 + a13A33 = 0.
Find the area of the triangle with vertices at the points given \((1, 0), (6, 0), (4, 3).\)
Solve the linear programming problem graphically:
Maximise Z = 4x + y subject to the constraints: 
x + y \(\le\) 50
3x + y \(\le\) 90
x \(\ge\) 0, y \(\ge\) 0
Show that the minimum of Z occurs at more than two points.
Minimize and Maximize Z = 5x + 10y subject to \(x + 2y \leqslant 120,x + y \geqslant 60\)\(x - 2y \geqslant 0,x,y \geqslant 0\).
Show that the minimum of Z occurs at more than two points.
Minimise and maximise \(Z = x + 2y \)subject to \(x + 2 y \geq 100,2 x - y \leq 0,2 x + y \leq 200\) \(x , y \geq 0\)
Show that the minimum of Z occurs at more than two points.
Maximize Z = x + y subject to \(x - y \leq - 1, - x + y \leq 0,x,y \geq 0\).

Load More