Home/Class 11/Biology/

Question and Answer

Pituitary controls urine volume through
(A) ADH
(B) STH
(C) ACTH
(D) GH

Answer

Answer: A
ADH is anti diuretic hormone. It is secreted from posterior pituitary. It stimulates water absorption and hence reduces urine volume.
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct49
Incorrect0
Watch More Related Solutions
The pollen grain is
(A) An immatures male gametophyte.
(B) A mature male gametophyte.
(C) Partially developed male gametophyte.
(D) Both (A) and (C)
Which one of the following represents a test cross?
(A) Ww x WW
(B) Ww x Ww
(C) Ww x ww
(D) WW x WW
The law of equipartition of energy is applicable to the system whose constituents are :
(A) in random motion
(B) in orderly motion
(C) at rest
(D) moving with constant speed
lf \(\alpha\in (0,\ \displaystyle \frac{\pi}{2})\) then \(\displaystyle \sqrt{\mathrm{x}^{2}+\mathrm{x}}+\frac{\tan^{2}\alpha}{\sqrt{\mathrm{x}^{2}+\mathrm{x}}}\) is always greater than or equal to



(A) 2 \(\tan\alpha\)
(B) 1
(C) 2
(D) \(\sec^{2}\alpha\)
lf the equations \(2{x}-{k}{y}+5z=7\) and \(kx-8y-10z+14=0\) represents the same plane then \(k^{2}-k+1=\)

(A) \(4\)
(B) \(12\)
(C) \(21\)
(D) \(0\)

If \(x^{4}+y^{4}-a^{2}xy=0\) defines \({y}\) implicitly as function of \(x\) , then \( \displaystyle \frac{dy}{dx}=\)

(A) \(\displaystyle \frac{4x^{3}-a^{2}y}{4y^{3}-a^{2}x}\)
(B) \(-\left(\displaystyle \frac{4x^{3}-a^{2}y}{4y^{3}-a^{2}x}\right)\)
(C) \(\displaystyle \frac{4x^{3}}{4y^{3}-a^{2}x}\)
(D) \(\displaystyle \frac{-4x^{3}}{4y^{3}-a^{2}x}\)
If \(\left( \alpha ,\beta \right) \) is a point on the chord \(PQ\) of the circle \({ x }^{ 2 }+{ y }^{ 2 }=19,\) where the coordinate of \(P\) and \(Q\) are \((3,-4)\) and \((4,3)\) respectively, then
(A) \(\alpha \in \left[ 3,4 \right] ,\beta \in \left[ -4,3 \right] \)
(B) \(\alpha \in \left[ -4,3 \right] ,\beta \in \left[ 4,3 \right] \)
(C) \(\alpha \in \left[ 3,3 \right] ,\beta \in \left[ -4,4 \right] \)
(D) None of these
If \(A=\displaystyle \int_{1}^{sin\theta}\frac{t}{1+t^{2}}dt\) and
\(B=\displaystyle \int_{1}^{cosec\theta}\frac{1}{t(1+t^{2})}dt\), then the value of determinant  \(\begin{vmatrix}
A & A^{2}& B\\
e^{A+B}& B^{2} &-1 \\
1& A^{2}+B^{2} & -1
\end{vmatrix}\)
is 


(A) \(\sin\theta\)
(B) \(cosec \theta\)
(C) \(0\)
(D) \(1\)
\(\displaystyle \frac{1}{2} + \frac{1}{4}+ \frac{1}{8} + ......... + \frac{1}{2^n} = 1 - \frac{1}{2^n}\) is true for

(A) Only natural number n \(\geq\) 3
(B) Only natural number n \(\geq\) 5
(C) Only natural number n < 10
(D) All natural number n
The median and mode of frequency distribution are 525 and 500, then mean of same frequency distribution is -
(A) 75
(B) 107.5
(C) 527.5
(D) 537.5

Load More