Let \( a,b,c,d,e\) are non-zero and distinct positive real numbers. If \( a,b,c\) are in \(AP\), \(b,c,d\) are in \(GP\). and \( c,d,e\) are in \(HP\), then \( a,c,e\) are in : (a) \(AP\) (b) \(GP\) (c) \(HP\) (d) Nothing can be said
Answer
If \( a,b,c\) A.P \( \Rightarrow b=\frac{a+c}{2}\) if \( c,d,e \) H.P. \( \Rightarrow d=\frac{2ec}{e+c}\) if \( b,c,d \) G.P. \( \Rightarrow {c}^{2}=bd\) \( {c}^{2}=\left(\frac{a+c}{2}\right)\left(\frac{2ec}{e+c}\right)\) \( \Rightarrow c^{2} =\frac{(a+c) e c}{e+c} \\ \Rightarrow c=\frac{(a+c) e}{e+c} \\ \Rightarrow c(e+c)=(a+c) e \\ \Rightarrow c e+c^{2}=a e+c e \\ \Rightarrow c^{2}=a e\) Hence, the correct option is (b).
If \( 8tanA=15, \)then the value of \( \frac{sin\theta -cosA}{sin\theta +cosA}\) is (A) \( \frac{7}{23}\) (B) \( \frac{11}{23}\) (C) \( \frac{13}{23}\) (D) \( \frac{17}{23}\)
If \( \sqrt{3}tan\theta =3sin\theta ,\) then the value of \( si{n}^{2}\theta -co{s}^{2}\theta \) is (A) \( \frac{1}{2}\) (B) \( \frac{1}{3}\) (C) \( \frac{1}{4}\) (D) \( \frac{1}{5}\)
If a and b are real number such that \( acos\theta +bsin\theta =4\) and \( asin\theta -bcos\theta =3\), then \( {(a}^{2}+{b}^{2})\) is (A) 7 (B) 12 (C) 25 (D) \( \sqrt{12}\)
If A is an acute angle and \( tanA=\frac{5}{12}, \)the value of case A is (A) \( \frac{11}{5}\) (B) \( \frac{13}{5}\) (C) \( \frac{16}{5}\) (D) \( \frac{17}{5}\)
If \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( 4{x}^{2}+2x-1=0\) then the value of \( \sum _{r=1}^{\infty }\left({\alpha }^{r}+{\beta }^{r}\right)\) is: (a) \( 2\) (b) \( 3\) (c) \( 6\) (d) \( 0\)