Home/Class 12/Maths/

Question and Answer

Let A be a square matrix of order 3 \(\times\) 3, then | kA| is equal to
  • k2 | A |
  • k |A |
  • k3 | A |
  • 3k | A |
loading
settings
Speed
00:00
03:39
fullscreen
Let A be a square matrix of order 3 \(\times\) 3, then | kA| is equal to
  • k2 | A |
  • k |A |
  • k3 | A |
  • 3k | A |

Answer

Let A be any 3×3 matrix
\(A=\left[\begin{array}{lll} {a} & {b} & {c} \\ {d} & {e} & {f} \\ {g} & {h} & {i} \end{array}\right]\)
\(\therefore|\mathrm{A}|=\left|\begin{array}{lll} {\mathrm{a}} & {\mathrm{b}} & {\mathrm{c}} \\ {\mathrm{d}} & {\mathrm{e}} & {\mathrm{f}} \\ {\mathrm{g}} & {\mathrm{h}} & {\mathrm{i}} \end{array}\right|\)
Clearly, \( \mathrm{k} \mathrm{A}=\left[\begin{array}{lll} {\mathrm{ka}} & {\mathrm{kb}} & {\mathrm{kc}} \\ {\mathrm{kd}} & {\mathrm{ke}} & {\mathrm{kf}} \\ {\mathrm{kg}} & {\mathrm{kh}} & {\mathrm{ki}} \end{array}\right]\)
\(\Rightarrow|\mathrm{k} \mathrm{A}|=\left|\begin{array}{lll} {\mathrm{ka}} & {\mathrm{kb}} & {\mathrm{kc}} \\ {\mathrm{kd}} & {\mathrm{ke}} & {\mathrm{kf}} \\ {\mathrm{kg}} & {\mathrm{kh}} & {\mathrm{ki}} \end{array}\right|\)
Taking out k from the 1st, 2nd and 3rd row, we get
\(|\mathrm{k} \mathrm{A}|=\mathrm{k}^{3}\left|\begin{array}{lll} {\mathrm{a}} & {\mathrm{b}} & {\mathrm{c}} \\ {\mathrm{d}} & {\mathrm{e}} & {\mathrm{f}} \\ {\mathrm{g}} & {\mathrm{h}} & {\mathrm{i}} \end{array}\right|\)
\(\therefore\) |kA| = k3|A|
Therefore, answer is option (C) k3|A|
Therefore the choice is: C
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct35
Incorrect0
Watch More Related Solutions
Let A = \(\left[\begin{array}{ccc} {1} & {2} & {1} \\ {2} & {3} & {1} \\ {1} & {1} & {5} \end{array}\right]\). verify that \([adj A] ^{–1} = adj (A ^{–1})\)
If a, b, c, are in A.P, then the determinant
\(\left|\begin{array}{ccc} {x+2} & {x+3} & {x+2 a} \\ {x+3} & {x+4} & {x+2 b} \\ {x+4} & {x+5} & {x+2 c} \end{array}\right|\) is
  • 1
  • 2x
  • x
  • 0
By using properties of determinants, show that \(\left| {\begin{array}{*{20}{c}} {{a^2} + 1}&{ab}&{ac} \\ {ab}&{{b^2} + 1}&{bc} \\ {ca}&{cb}&{{c^2} + 1} \end{array}} \right| = 1 + {a^2} + {b^2} + {c^2}\)
Examine the consistency of the system of equation x + 2y = 2; 2x + 3y = 3
Find the inverse of the matrix (if it exists) given \(\left[ {\begin{array}{*{20}{c}} { - 1}&5 \\ { - 3}&2 \end{array}} \right]\)
Examine the consistency of the system of equation \(2x - y = 5;\,\,x + y = 4\)
For the matrix \(A = \left[ {\begin{array}{*{20}{c}} 3&2 \\ 1&1 \end{array}} \right]\), find numbers a and b such that A2 + aA + bI = 0.
Let A = \(\left[\begin{array}{ccc} {1} & {2} & {1} \\ {2} & {3} & {1} \\ {1} & {1} & {5} \end{array}\right]\). verify that (A–1)–1 = A
Evaluate \(\left| {\begin{array}{*{20}{c}} 0&1&2 \\ { - 1}&0&{ - 3} \\ { - 2}&3&0 \end{array}} \right|\)
Using the property of determinant and without expanding prove that \(\left| {\begin{array}{*{20}{c}} x&a&{x + a} \\ y&b&{y + b} \\ z&c&{z + c} \end{array}} \right| = 0\)

Load More