Home/Class 11/Maths/

Question and Answer

If \( \underset{x\xrightarrow{} \infty }{lim}\left(\frac{{x}^{2}+1}{x+1}-ax-b\right)=0 \)then find values of a & b
loading
settings
Speed
00:00
05:57
fullscreen
If \( \underset{x\xrightarrow{} \infty }{lim}\left(\frac{{x}^{2}+1}{x+1}-ax-b\right)=0 \)then find values of a & b

Answer

A=1,b=-1
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

Solution for If  underset{xxrightarrow{} infty }{lim}left(frac{{x}^{2}+1}{x+1}-ax-bright)=0 then find values of a & b
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct32
Incorrect0
Watch More Related Solutions
Write down the sequence whose nth term is \( {2}^{n}/n\) and (ii) \( \left[3+{\left(-1\right)}^{n}\right]/{3}^{n}\)
The coefficient of \( {x}^{2}{y}^{5}{z}^{3}\) in the expansion of \( {\left(2x+y+3z\right)}^{10}\) is
A.\( \frac{10!}{2!3!}{2}^{2}{3}^{2}\)
B.\( \frac{10!}{2!5!3!}{2}^{2}{3}^{2}\)
C.\( \frac{10!}{2!5!3!}{2}^{2}{3}^{3}\)
D.\( \frac{10!}{2!5!3!}\)
The number of solutions of the equation \( {2}^{cosx}=|\)sin x\( |\) in \( [-2\pi ,2\pi ]\) is
1)1 2)4 3)3 4)8
\( \underset{x\xrightarrow{}\;2}{lim}\frac{{x}^{3}-{3x}^{2}+4}{{x}^{4}-{8x}^{2}+16}\)
Which is greater: \( x=lo{g}_{3 }5\;or\;y=lo{g}_{17}\left(25\right)\)
If roots of the equation \( l{x}^{2}+mx-2=0\) are real and reciprocal of each other, then
(A) l = 2 (B) l = \( -\)2 (C) m = 2 (D) m = \( -\)2
A tangent is drawn to the ellipse \( \frac{{x}^{2}}{27}+{y}^{2}=1\) at \( \left(3\sqrt{3} cos \theta ,sin\theta \right)\) where \( \theta \epsilon \left(0,  \frac{\pi }{2}\right)\). Then find
the value of \( \theta  \)such that the sum of intercepts on the axes made by this tangent is minimum.
Find the remainder when \( {32}^{{32}^{32}}\) is divided by 7.
\( 0\le\;a\le\;3\), \( 0\le\;b\le\;3\) and the equation,
\( {x}^{2}+4+3cos(ax+b)=2x\) has atleast one solution then the value of \( a+b\)
A) \( \frac{\pi }{2}\)
B) \(  \frac{\pi }{4}\)
C) \(  \frac{\pi }{3}\)
D) \(  \pi \)
The least value of the product xyz for which the determinant \( \left|\begin{array}{ccc}x& 1& 1\\ 1& y& 1\\ 1& 1& z\end{array}\right|\) is non-negative, is:
(A) \( -16\sqrt{2}\)
(B) \( -2\sqrt{2}\)
(C) \( -1\)
(D) \( -8\)

Load More