Home/Class 11/Maths/

Question and Answer

If the sum of n terms of an A.P. is cn\( \left(n - 1\right)\) where c \( \ne\;0 \), then the sum of the squares of these terms is
A.\( {c}^{2}n{\left(n + 1\right)}^{2}\)
B.\( \frac{2}{3}{c}^{2}n\left(n - 1\right)\left(2n - 1\right)\)
C.\( \frac{{2c}^{2}}{3}n\left(n+ 1\right)\left(2n+ 1\right)\)
D.none of these

Answer

Answer for If the sum of n terms of an A.P. is cn left(n - 1right) where c  ne;0 , then the sum of the squares of these terms is A. {c}^{2}n{left(n + 1right)}^{2}B. frac{2}{3}{c}^{2}nleft(n - 1right)left(2n - 1right)C. frac{{2c}^{2}}{3}nleft(n+ 1right)left(2n+ 1right)D.none of these
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct5
Incorrect0
Watch More Related Solutions
\( \underset{x\xrightarrow{} \infty }{lim}\frac{{\left(x+1\right)}^{10}{+\left(x+2\right)}^{10}+\cdots +{\left(x+100\right)}^{10}}{{x}^{10}{+10}^{10}}\) is equal to
(a) 0 (b) 1 (c) 10 (d) 100
The equation of the bisector of the acute angle between the lines \( 2x-y+4=0 \)and
\( x-2y=1 \)is
(a) \( x-y+5=0\) (b)\( x-y+1=0\) (c)\( x-y=5\) (d) none of these
Find the derivative of \( tan\sqrt{x}\) w.r.t. x., using first principle
If A and G are respectively arithmetic and geometric mean between positive no. a and b; then the quadratic equation having a, b as its roots is
\( {x}^{2}-2Ax+ {G}^{2}=0\)
If \( \underset{x\xrightarrow{} \infty }{lim}\left(\frac{{x}^{2}+1}{x+1}-ax-b\right)=0 \)then find values of a & b
Write down the sequence whose nth term is \( {2}^{n}/n\) and (ii) \( \left[3+{\left(-1\right)}^{n}\right]/{3}^{n}\)
The coefficient of \( {x}^{2}{y}^{5}{z}^{3}\) in the expansion of \( {\left(2x+y+3z\right)}^{10}\) is
A.\( \frac{10!}{2!3!}{2}^{2}{3}^{2}\)
B.\( \frac{10!}{2!5!3!}{2}^{2}{3}^{2}\)
C.\( \frac{10!}{2!5!3!}{2}^{2}{3}^{3}\)
D.\( \frac{10!}{2!5!3!}\)
The number of solutions of the equation \( {2}^{cosx}=|\)sin x\( |\) in \( [-2\pi ,2\pi ]\) is
1)1 2)4 3)3 4)8
\( \underset{x\xrightarrow{}\;2}{lim}\frac{{x}^{3}-{3x}^{2}+4}{{x}^{4}-{8x}^{2}+16}\)
Which is greater: \( x=lo{g}_{3 }5\;or\;y=lo{g}_{17}\left(25\right)\)

Load More