Home/Class 11/Maths/

Question and Answer

If the sides of a triangle are in G.P., and its largest angle is twice the smallest, then the common
ratio \( r\) satisfies the inequality
a.\( 0\lt r\lt \sqrt{2}\)
b.\( 1\lt r\lt \sqrt{2} \)
c.\( 1\lt r\lt 2\)
d.none of these
loading
settings
Speed
00:00
03:43
fullscreen
If the sides of a triangle are in G.P., and its largest angle is twice the smallest, then the common
ratio \( r\) satisfies the inequality
a.\( 0\lt r\lt \sqrt{2}\)
b.\( 1\lt r\lt \sqrt{2} \)
c.\( 1\lt r\lt 2\)
d.none of these

Answer

B
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

Solution for If the sides of a triangle are in G.P., and its largest angle is twice the smallest, then the common ratio  r satisfies the inequalitya. 0lt  rlt sqrt{2}b. 1lt  rlt sqrt{2} c. 1lt  rlt 2d.none of these
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct33
Incorrect0
Watch More Related Solutions
Let \( {a}_{1},{a}_{2},{a}_{3}\cdots \cdots \cdots {a}_{11}\) be real numbers satisfying
\( {a}_{1}=15,27-2{a}_{2}\gt 0\;and {a}_{k}=2{a}_{k-1}-{a}_{k-2}\) for \( k=3,4\cdots \cdots \cdots\;11.\)
If \( \frac{{a}_{1}^{2}+{a}_{2}^{2}+\cdots \cdots +{a}_{11}^{2}}{11}=90,\) then the value of \( \frac{{a}_{1}+{a}_{2}+\cdots \cdots +{a}_{11}}{11}\) is equals to _______.
The value of \( sin\left(\frac{\pi }{14}\right)sin\left(\frac{3\pi }{14}\right)sin\left(\frac{5\pi }{14}\right)\) is
Manufacturing cost of a product is\(  9{x}^{2}\) while the company sells it at a rate of 18x + 6.
Find
a.Profit as a function of x by the company.
b.Maximum profit that can be made by company on the product.
Find the incentre of the triangle formed by \( x+y-7=0,\) \( x-y+1=0\)\( x-3y+5=0\).
If \( x=a+b,y=a\omega +b{\omega }^{2}\) and \( z=a{\omega }^{2}+b\omega \), where \( \omega \) is an imaginary cube root of unity,
prove that \( {x}^{2}+{y}^{2}+{z}^{2}=6ab\).
Give two uses of coal-tar.
Let \( f:R\xrightarrow{}\;R\) be such that \( f\left(1\right)=3\;and {f}^{'}\left(1\right)=6.\) Then
\( {\left(lim\right)}_{ x\xrightarrow{}\;0}{\left(\frac{f\left(1+x\right)}{f\left(1\right)}\right)}^{1/x}=\)
A.\(  1\)
B.\( {e}^{\frac{1}{2}}\)
C.\( {e}^{2}\)
D.\( {e}^{3}\)
\( \underset{x\xrightarrow{} -\infty }{lim}\frac{{x}^{2}\bullet\;tan\left(\frac{1}{x}\right)}{\sqrt{8{x}^{2}+7x+1}}\) is
Equation of an ellipse whose axes are parallel to co-ordinate axes and center is \( (h,k)\)
Let \( f\) be a differentiable function on the open interval \((a,b)\). Which of the following statements must be true?
I. \( f\) is continuous on the closed interval \( [a,b]\)
II. \( f\) is bounded on the open interval \( (a,b)\)
III. If \( a<{a}_{1}<{b}_{1}< b\), and f\( \left({a}_{1}\right)<0< f\left({b}_{1}\right)\), then there is a number \( c\) such that \( {a}_{1}< c<{b}_{1}\) and \( f \left(c\right)=0\)( )
A. I and II only
B. I and III only
C. II and III only
D. Only III

Load More