Home/Class 11/Maths/

Question and Answer

If \( tan\left(7{x}^{°}\right)-\frac{sin{ x}^{°}cos{ y}^{°}+cos{ x}^{°}sin{ y}^{°}}{cos{ x}^{°}cos{ y}^{°}-sin{ x}^{°}sin{ y}^{°}}\) where \( x+y={134}^{°}\), then the least positive integral value of x, is-
A.\( {122}^{°}\)
B.\(  {172}^{°}\)
C.\( {100}^{°}\)
D.\( {132}^{°}\)

Answer

A
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

Solution for If  tanleft(7{x}^{°}right)-frac{sin{ x}^{°}cos{ y}^{°}+cos{ x}^{°}sin{ y}^{°}}{cos{ x}^{°}cos{ y}^{°}-sin{ x}^{°}sin{ y}^{°}} where  x+y={134}^{°}, then the least positive integral value of x, is-A. {122}^{°}B.  {172}^{°}C. {100}^{°}D. {132}^{°}
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct13
Incorrect0
Watch More Related Solutions
Evaluate the limit: \( \underset{h\xrightarrow{}\;0}{lim}⌈\frac{1}{h\sqrt[3]{8+h}}-\frac{1}{2h}⌉\)
If the line \( lx+my+n=0\) cuts the ellipse \( \left(\frac{{x}^{2}}{{a}^{2}}\right)+\left(\frac{{y}^{2}}{{b}^{2}}\right)=1\) at points whose eccentric angles differ by \( \frac{\pi }{2}\), then find the value of \( \frac{{a}^{2}{l}^{2}+{b}^{2}{m}^{2}}{{n}^{2}}\).
Let \( {S}_{n} \)denote the sum of first \( n \)terms of an A.P. If \( {S}_{2n}=3{S}_{n}, \)then find the ratio \( {S}_{3n}/{S}_{n}\).
If the sides of a triangle are in G.P., and its largest angle is twice the smallest, then the common
ratio \( r\) satisfies the inequality
a.\( 0\lt r\lt \sqrt{2}\)
b.\( 1\lt r\lt \sqrt{2} \)
c.\( 1\lt r\lt 2\)
d.none of these
Let \( {a}_{1},{a}_{2},{a}_{3}\cdots \cdots \cdots {a}_{11}\) be real numbers satisfying
\( {a}_{1}=15,27-2{a}_{2}\gt 0\;and {a}_{k}=2{a}_{k-1}-{a}_{k-2}\) for \( k=3,4\cdots \cdots \cdots\;11.\)
If \( \frac{{a}_{1}^{2}+{a}_{2}^{2}+\cdots \cdots +{a}_{11}^{2}}{11}=90,\) then the value of \( \frac{{a}_{1}+{a}_{2}+\cdots \cdots +{a}_{11}}{11}\) is equals to _______.
The value of \( sin\left(\frac{\pi }{14}\right)sin\left(\frac{3\pi }{14}\right)sin\left(\frac{5\pi }{14}\right)\) is
Manufacturing cost of a product is\(  9{x}^{2}\) while the company sells it at a rate of 18x + 6.
Find
a.Profit as a function of x by the company.
b.Maximum profit that can be made by company on the product.
Find the incentre of the triangle formed by \( x+y-7=0,\) \( x-y+1=0\)\( x-3y+5=0\).
If \( x=a+b,y=a\omega +b{\omega }^{2}\) and \( z=a{\omega }^{2}+b\omega \), where \( \omega \) is an imaginary cube root of unity,
prove that \( {x}^{2}+{y}^{2}+{z}^{2}=6ab\).
Give two uses of coal-tar.

Load More