Home/Class 11/Maths/

Question and Answer

If one root of equation \( (l-m){x}^{2}+lx+1= 0\) be double of the other and if \( l\) be real, show that \( m\le \frac{9}{8}\).

Answer

See solution below
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

Solution for If one root of equation  (l-m){x}^{2}+lx+1= 0 be double of the other and if  l be real, show that  mle frac{9}{8}.
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct25
Incorrect0
Watch More Related Solutions
The solution set of the equation \( 4\sin\theta \cos\theta -2\cos\theta -2\sqrt{3}\sin\theta +\sqrt{3}=0\) in the interval \( (0, 2\pi )\) is( )
A. \( \left\{\frac{3\pi }{4},\frac{7\pi }{4}\right\}\)
B. \( \left\{\frac{\pi }{3},\frac{5\pi }{3}\right\}\)
C. \( \left\{\frac{3\pi }{4},\pi ,\frac{\pi }{3},\frac{5\pi }{3}\right\}\)
D. \( \left\{\frac{\pi }{6},\frac{5\pi }{6},\frac{11\pi }{6}\right\}\)
Find the sum to \( n\) terms of the sequence \( 1.3{.2}^{2}+2.4{.3}^{2}+3.5{.4}^{2}+\cdots \)
If one root of the equation \( {x}^{2}-x-k=0\) be square of the other, then k is equal to
A.\( 2\pm \surd\;3\)
B.\( 3\pm \surd\;2\)
C.\( 2\pm \surd\;5\)
D.\( 5\pm \surd\;2\)
If \( \theta =\frac{\pi }{4n}\) then the value of \( tan \theta\;tan \left(2\theta \right) tan \left(3\theta \right).... tan \left(\right(2n-1\left)\theta \right)\) is
A travelling harmonic wave is represented by the equation \( y\left(x,t\right)= {10}^{-3}sin\left(50\;t+2x\right)\), where x and y are in meter and t is in seconds. Which of the following is a correct statement about the wave?
The wave is propagating along the
a.negative x-axis with speed 25\( {ms}^{-1}\)
b.The wave is propagating along the positive x-axis with speed 25\( {ms}^{-1}\)
c.The wave is propagating along the positive x-axis with speed 100\( {ms}^{-1}\)
d.The wave is propagating along the negative x-axis with speed 100\( {ms}^{-1}\)
If \( sin\theta =\frac{1}{2}\), \( cos\phi =\frac{1}{3}\), then \( \theta +\phi \) belongs to, where \( 0\lt \theta , \phi \lt \frac{\pi }{2}\)( )
A. \( \left(\frac{\pi }{3},\frac{\pi }{2}\right)\)
B. \( \left(\frac{\pi }{2},\frac{2\pi }{3}\right)\)
C. \( \left(\frac{2\pi }{3},\frac{5\pi }{6}\right)\)
D. \(  \left(\frac{5\pi }{6},\pi \right)\)
The number of four
digit numbers that can be made with the digits 1, 2, 3, 4, and 5 in which at least two digits are identical is
( )
A. \(4^5-5!\)
B. \(505\)
C. \(600\)
D. none of these
Consider the parabola \( {y}^{2}=4x\). Let \( A\equiv \left(4, -4\right)\) and \( B\equiv \left(9, 6\right)\) be two fixed points on the parabola. Let C be a moving point on the parabola between A and B such that the area of the triangle ABC is maximum. Then the coordinates of C are
a.\( \left(\frac{1}{4},1\right)\)
b.\( \left(4, 4\right)\)
c.\(\left(3, \frac{2}{\sqrt{3}}\right)\)
d.\( \left(3, -2\sqrt{3}\right)\)
If \( {sin}^{-1}x+si{n}^{-1}y=\frac{\pi }{2}\) and \( sin2x=cos2y\) then the value of x is.( )
A. \( \frac{\pi }{8}+\sqrt{\frac{1}{2}-\frac{{\pi }^{2}}{64}}\)
B. \( \sqrt{\frac{1}{2}-\frac{{\pi }^{2}}{64} }-\frac{\pi }{2}  \)
C. \( \frac{\pi }{12}+\sqrt{\frac{1}{2}-\frac{{\pi }^{2}}{64}}\)
D. \( \sqrt{\frac{1}{2}-\frac{{\pi }^{2}}{64} }-\frac{\pi }{8}  \)
Find the general solution of the equations (i) \( sin\theta =\frac{\sqrt{3}}{2}\) (ii) \( 2sin\theta +1=0\) (iii) \( cos\;ec\theta =2\)

Load More