You need to enable JavaScript to use SnapSolve.
NCERT Solution
Class 6
Maths
Physics
Chemistry
Biology
Class 7
Maths
Physics
Chemistry
Biology
Class 8
Maths
Physics
Chemistry
Biology
Class 9
Maths
Science
Class 10
Maths
Science
Class 11
Maths
Physics
Chemistry
Biology
Class 12
Maths
Physics
Chemistry
Biology
Popular Books
Class
Class 6
Class 7
Class 8
Class 9
Class 10
Class 11
Class 12
Others
Subject
Maths
Physics
Chemistry
Biology
Science
Others
Download PDFs
Quick Revision Notes
Class 6
Maths
Physics
Chemistry
Biology
Class 7
Maths
Physics
Chemistry
Biology
Class 8
Maths
Physics
Chemistry
Biology
Class 9
Maths
Physics
Chemistry
Biology
Class 10
Maths
Physics
Chemistry
Biology
Class 11
Maths
Physics
Chemistry
Biology
Class 12
Maths
Physics
Chemistry
Biology
Mind Maps
Class 11
Physics
Chemistry
Biology
Class 12
Physics
Chemistry
Biology
Sample Question Papers
Class 10
Maths
Previous Years Papers
Class 10
Maths
Important Questions
Class 10
Maths
NCERT Textbook Solutions
Class 10
Maths
Supplementary Books
Class 10
Maths
More
Follow us on Youtube
Follow us on Facebook
Download APP
About SnapSolve
Join Now
NCERT
Class 6
Maths
Physics
Chemistry
Biology
Class 7
Maths
Physics
Chemistry
Biology
Class 8
Maths
Physics
Chemistry
Biology
Class 9
Maths
Science
Class 10
Maths
Science
Class 11
Maths
Physics
Chemistry
Biology
Class 12
Maths
Physics
Chemistry
Biology
Popular Books
Class 6
Maths
Science
Class 7
Maths
Science
Class 8
Maths
Science
Class 9
Maths
Science
Class 10
Maths
Science
Class 11
Maths
Physics
Chemistry
Biology
Class 12
Maths
Physics
Chemistry
Biology
Class
Class 6
Class 7
Class 8
Class 9
Class 10
Class 11
Class 12
Others
Subject
Maths
Physics
Chemistry
Biology
Science
Others
More
Follow us on Youtube
Follow us on Facebook
Download APP
Home
/
Class 12
/
Maths
/
Question and Answer
Question
Maths
Class 12
If
\(A = \left[ {\begin{array}{*{20}{c}} 1&1&{ - 2} \\ 2&1&{ - 3} \\ 5&4&9 \end{array}} \right]\)
find |A|.
Answer
Given:
\(A = \left[ {\begin{array}{*{20}{c}} 1&1&{ - 2} \\ 2&1&{ - 3} \\ 5&4&9 \end{array}} \right]\)
\( \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}} 1&1&{ - 2} \\ 2&1&{ - 3} \\ 5&4&9 \end{array}} \right|\)
Expanding along first row,
\(1\left| {\begin{array}{*{20}{c}} 1&{ - 3} \\ 4&{ - 9} \end{array}} \right| - 1\left| {\begin{array}{*{20}{c}} 2&{ - 3} \\ 5&{ - 9} \end{array}} \right| + \left( { - 2} \right)\left| {\begin{array}{*{20}{c}} 2&1 \\ 5&4 \end{array}} \right|\)
\(= \left\{ { - 9 - \left( { - 12} \right)} \right\} - \left\{ { - 18 - \left( { - 15} \right)} \right\} - 2\left( {8 - 5} \right)\)
\( = - 9 + 12 - \left( { - 18 + 15} \right) - 2\left( 3 \right)\)
\(= 3-\left( { - 3} \right) - 6\)
\( = 3 + 3 - 6 = 0\)
To Keep Reading This Answer, Download the App
4.6
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
Review from Google Play
View Answer in-APP
Correct
18
Incorrect
0
Still Have Question?
Ask Your Question
Find More Answer
Watch More Related Solutions
Solve the system of linear equation, using matrix method
\(2x + y + z = 1; x - 2y - z = \frac{3}{2};\,\,3y - 5z = 9\)
Solve the system of linear equation, using matrix method
\(2x + y + z = 1; x - 2y - z = \frac{3}{2};\,\,3y - 5z = 9\)
Math
|
Class 12
Find the inverse of the matrix (if it exists) given
\(\left[ {\begin{array}{*{20}{c}} 2&{ - 2} \\ 4&3 \end{array}} \right]\)
Find the inverse of the matrix (if it exists) given
\(\left[ {\begin{array}{*{20}{c}} 2&{ - 2} \\ 4&3 \end{array}} \right]\)
Math
|
Class 12
Verify A (adj. A) = (adj. A) A = |A|:
\(\left[ {\begin{array}{*{20}{c}} 1&{ - 1}&2 \\ 3&0&{ - 2} \\ 1&0&3 \end{array}} \right]\)
Verify A (adj. A) = (adj. A) A = |A|:
\(\left[ {\begin{array}{*{20}{c}} 1&{ - 1}&2 \\ 3&0&{ - 2} \\ 1&0&3 \end{array}} \right]\)
Math
|
Class 12
Find the inverse of the matrix (if it exists) given
\(\left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 0&{\cos \alpha }&{\sin \alpha } \\ 0&{\sin \alpha }&{ - \cos \alpha } \end{array}} \right]\)
Find the inverse of the matrix (if it exists) given
\(\left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 0&{\cos \alpha }&{\sin \alpha } \\ 0&{\sin \alpha }&{ - \cos \alpha } \end{array}} \right]\)
Math
|
Class 12
Find the equation of the line joining (1, 2) and (3, 6) using determinant.
Find the equation of the line joining (1, 2) and (3, 6) using determinant.
Math
|
Class 12
If
\(A = \left| {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\ 6&0&4 \\ 1&5&{ - 7} \end{array}} \right|,\)
Verify that det A = det (A')
If
\(A = \left| {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\ 6&0&4 \\ 1&5&{ - 7} \end{array}} \right|,\)
Verify that det A = det (A')
Math
|
Class 12
Solve the system of linear equation, using matrix method x - y + z = 4; 2x + y - 3z = 0; x + y + z = 2
Solve the system of linear equation, using matrix method x - y + z = 4; 2x + y - 3z = 0; x + y + z = 2
Math
|
Class 12
Solve the system of equations
\(\begin{aligned} &2 x+5 y=1\\ &3 x+2 y=7 \end{aligned}\)
Solve the system of equations
\(\begin{aligned} &2 x+5 y=1\\ &3 x+2 y=7 \end{aligned}\)
Math
|
Class 12
By using properties of determinant, show that
\(\left| {\begin{array}{*{20}{c}} {x + y + 2z}&x&y \\ z&{y + z + 2x}&y \\ z&x&{z + x + 2y} \end{array}} \right| = 2{\left( {x + y + z} \right)^3}\)
By using properties of determinant, show that
\(\left| {\begin{array}{*{20}{c}} {x + y + 2z}&x&y \\ z&{y + z + 2x}&y \\ z&x&{z + x + 2y} \end{array}} \right| = 2{\left( {x + y + z} \right)^3}\)
Math
|
Class 12
If
\(A = \left[ {\begin{array}{*{20}{c}} 1&2 \\ 4&2 \end{array}} \right]\)
, then show that |2A| = 4|A|
If
\(A = \left[ {\begin{array}{*{20}{c}} 1&2 \\ 4&2 \end{array}} \right]\)
, then show that |2A| = 4|A|
Math
|
Class 12
Load More
More Solution Recommended For You
NCERT Maths for Class 6
NCERT Physics for Class 6
NCERT Chemistry for Class 6
NCERT Biology for Class 6
NCERT Maths for Class 7
NCERT Physics for Class 7
NCERT Chemistry for Class 7
NCERT Biology for Class 7
NCERT Maths for Class 8
NCERT Physics for Class 8
NCERT Chemistry for Class 8
NCERT Biology for Class 8
Previous
Next