Home/Class 10/Maths/

Question and Answer

If \( 8tanA=15,  \)then the value of \( \frac{sin\theta -cosA}{sin\theta +cosA}\) is
(A) \( \frac{7}{23}\)
(B) \( \frac{11}{23}\)
(C) \( \frac{13}{23}\)
(D) \( \frac{17}{23}\)

Answer

(A)
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

Here, \( 8tanA=15\)
\( tanA=\frac{15}{8}\)
\( A{C}^{2}=225+64\)
\( AC=17\)
\( sinA=\frac{15}{17},cosA=\frac{8}{17}\)
\( \therefore \frac{sinA-cosA}{sinA+cosA}=\frac{\frac{15}{17}-\frac{8}{17}}{\frac{15+8}{17}}=\frac{15-8}{15+8}=\frac{7}{23} \)
Solution for If  8tanA=15,  then the value of  frac{sintheta -cosA}{sintheta +cosA} is (A)  frac{7}{23}(B)  frac{11}{23}(C)  frac{13}{23}(D)  frac{17}{23}
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct42
Incorrect0
Watch More Related Solutions
If \( \sqrt{3}tan\theta =3sin\theta ,\) then the value of \( si{n}^{2}\theta -co{s}^{2}\theta \) is
(A) \( \frac{1}{2}\)
(B) \( \frac{1}{3}\)
(C) \( \frac{1}{4}\)
(D) \( \frac{1}{5}\)
If a and b are real number such that \( acos\theta +bsin\theta =4\) and \( asin\theta -bcos\theta =3\), then \( {(a}^{2}+{b}^{2})\) is
(A) 7
(B) 12
(C) 25
(D) \( \sqrt{12}\)
The value of \( sin\theta .cos\theta (tan\theta +cot\theta )\) is
(A) 1
(B) 2
(C) -1
(D) 0
If \( sin\theta =\frac{3}{5},\) then the value of \( (tan\theta +sec\theta {)}^{2} \)is
(A) 2
(B) 4
(C) 6
(D) 8
\( tan35°. tan40°.tan45°.tan50°tan55° \) is equal to
(A) 1
(B) 2
(C) 0
(D) 3
If \( tan\theta =\frac{3}{4},\) evaluate \( \frac{4sin\theta -2cos\theta }{4sin\theta +3cos\theta }\) is
(A) \( 1∕3\)
(B) \( 1∕4\)
(C) \( 1∕5\)
(D) \( 1∕6\)
If A is an acute angle and \( tanA=\frac{5}{12}, \)the value of case A is
(A) \( \frac{11}{5}\)
(B) \( \frac{13}{5}\)
(C) \( \frac{16}{5}\)
(D) \( \frac{17}{5}\)
If \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( 4{x}^{2}+2x-1=0\) then the value of \( \sum _{r=1}^{\infty }\left({\alpha }^{r}+{\beta }^{r}\right)\) is:
(a) \( 2\)
(b) \( 3\)
(c) \( 6\)
(d) \( 0\)
\( \frac{cos\left(90°-\theta \right)cos\theta }{tan\theta }+\frac{co{s}^{2}(90°-\theta )}{1}=\)
(A) 0
(B) 1
(C) 2
(D) 3
\( \frac{sin\theta .cos\theta\;cos(90°-\theta )}{sin(90°-\theta )}+\frac{sin\theta\;cos\theta .sin(90°-\theta )}{cos(90°-\theta )}\) is equal to
(A) 0
(B) 1
(C) 2
(D) 3

Load More