Home/Class 11/Maths/

Question and Answer

Find the sum to n terms of the series \( 1+\left(1+2\right)+\left(1+2+3\right)+ \dots \dots \)

Answer

Answer for Find the sum to n terms of the series  1+left(1+2right)+left(1+2+3right)+ dots dots
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

Solution for Find the sum to n terms of the series  1+left(1+2right)+left(1+2+3right)+ dots dots
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct13
Incorrect0
Watch More Related Solutions
State two important uses of coke.
If \( \alpha \) and \( \beta \) are the roots of the equation \( {x}^{2}-x+3=0\) then \( {\alpha }^{4} + {\beta }^{4}=?\)
Show that \( {11}^{n + 2} + {12}^{2n + 1}\) is divisible by 133.
For a certain value of \( c\),\(  \underset{x\xrightarrow{} -\infty }{lim}\left[({x}^{5}+7{x}^{4}+2{)}^{c}-x\right]\) , is finite and non zero and has the value
equal to l. Find the value of \( (l-2c)\).
Show:\( \left({c}_{0}+{c}_{1}\right)\left({c}_{1}+{c}_{2}\right)\left({c}_{2}+{c}_{3}\right)\left({c}_{3}+{c}_{4}\right)\cdots \cdots \cdots \left({c}_{n-1}+{c}_{n}\right)=\frac{{c}_{0}{c}_{1}{c}_{2\cdots \cdots {{ c}_{n-1}\left(n+1\right)}^{n} }}{n!}\)
The repeating decimal \( 0.429642964296\cdots \) represents the fraction
To find a point \( P\) on line segment \( AB\) such that \( \frac{AP}{AB}=\frac{3}{7}\) in what ratio does the segment \( AB\) is to be divided.
Consider a family of straight lines \( \left(x+y\right)+\lambda \left(2x-y+1\right)=0\). Find the equation of the straight line belonging to this family that is farthest from \( \left(1,  -3\right)\).
In how many ways a committee of 5 members can be formed out of 8 gentlemen and 4 ladies, if one particular lady is always to be taken
a.140
b.330
c.560
d.None of these
If the roots of the equation \( {x}^{2}-bx+c=0\) are two consecutive integers, then find the value of \( {b}^{2}-4c\).

Load More