Home/Class 6/Maths/

Question and Answer

Question

Find the ratio of the first quantity with the second in its simplest form.

11 yr. 8 months to 8 yr. 4 month ratio is 7:5,if true then enter \(1\) and if false then enter \(0\).

(A) 1

Answer

Answer: A

Ratio of two quantities can be calculated only when they are of same units. 

So, converting \( 8  years  4  months \) into months , we get \( 8 \times 12 + 4  = 100  months \)

Converting  \( 11  years  8  months \) into months , we get \( 11 \times 12 + 8  = 140  months \)

Ratio of second quantity to first

quantity  \( = 140: 100  \)

Simplifying it by dividing by \( 20  \), we get the ratio \( = 7:5

\)

To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct4
Incorrect0
Watch More Related Solutions
Enzyme, vitamins and hormones can be classified into a single category of biological chemicals, because all of these
(A) Decrease metabolism.
(B) Are conjugated proteins.
(C) Are exclusively synthesized in the body of a living organism as at present.
(D) Help in regulating metabolism.
Pituitary controls urine volume through
(A) ADH
(B) STH
(C) ACTH
(D) GH
The pollen grain is
(A) An immatures male gametophyte.
(B) A mature male gametophyte.
(C) Partially developed male gametophyte.
(D) Both (A) and (C)
Which one of the following represents a test cross?
(A) Ww x WW
(B) Ww x Ww
(C) Ww x ww
(D) WW x WW
The law of equipartition of energy is applicable to the system whose constituents are :
(A) in random motion
(B) in orderly motion
(C) at rest
(D) moving with constant speed
lf \(\alpha\in (0,\ \displaystyle \frac{\pi}{2})\) then \(\displaystyle \sqrt{\mathrm{x}^{2}+\mathrm{x}}+\frac{\tan^{2}\alpha}{\sqrt{\mathrm{x}^{2}+\mathrm{x}}}\) is always greater than or equal to



(A) 2 \(\tan\alpha\)
(B) 1
(C) 2
(D) \(\sec^{2}\alpha\)
lf the equations \(2{x}-{k}{y}+5z=7\) and \(kx-8y-10z+14=0\) represents the same plane then \(k^{2}-k+1=\)

(A) \(4\)
(B) \(12\)
(C) \(21\)
(D) \(0\)

If \(x^{4}+y^{4}-a^{2}xy=0\) defines \({y}\) implicitly as function of \(x\) , then \( \displaystyle \frac{dy}{dx}=\)

(A) \(\displaystyle \frac{4x^{3}-a^{2}y}{4y^{3}-a^{2}x}\)
(B) \(-\left(\displaystyle \frac{4x^{3}-a^{2}y}{4y^{3}-a^{2}x}\right)\)
(C) \(\displaystyle \frac{4x^{3}}{4y^{3}-a^{2}x}\)
(D) \(\displaystyle \frac{-4x^{3}}{4y^{3}-a^{2}x}\)
If \(\left( \alpha ,\beta \right) \) is a point on the chord \(PQ\) of the circle \({ x }^{ 2 }+{ y }^{ 2 }=19,\) where the coordinate of \(P\) and \(Q\) are \((3,-4)\) and \((4,3)\) respectively, then
(A) \(\alpha \in \left[ 3,4 \right] ,\beta \in \left[ -4,3 \right] \)
(B) \(\alpha \in \left[ -4,3 \right] ,\beta \in \left[ 4,3 \right] \)
(C) \(\alpha \in \left[ 3,3 \right] ,\beta \in \left[ -4,4 \right] \)
(D) None of these
If \(A=\displaystyle \int_{1}^{sin\theta}\frac{t}{1+t^{2}}dt\) and
\(B=\displaystyle \int_{1}^{cosec\theta}\frac{1}{t(1+t^{2})}dt\), then the value of determinant  \(\begin{vmatrix}
A & A^{2}& B\\
e^{A+B}& B^{2} &-1 \\
1& A^{2}+B^{2} & -1
\end{vmatrix}\)
is 


(A) \(\sin\theta\)
(B) \(cosec \theta\)
(C) \(0\)
(D) \(1\)

Load More