Home/Class 12/Maths/

Question and Answer

Find the equation of the line joining (1, 2) and (3, 6) using determinant.
loading
settings
Speed
00:00
03:53
fullscreen
Find the equation of the line joining (1, 2) and (3, 6) using determinant.

Answer

Let \(p\left( {x,y} \right)\) be any point on the line joining the points (1, 2) and (3, 6).
Then, Area of triangle that could be formed by these points is zero.
\(\therefore\) Area of triangle = \(\frac{1}{2}\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1 \\ {{x_2}}&{{y_2}}&1 \\ {{x_3}}&{{y_3}}&1 \end{array}} \right| = 0\)
\(\Rightarrow\)  \(\frac{1}{2}\left| {\begin{array}{*{20}{c}} x&y&1 \\ 1&2&1 \\ 3&6&1 \end{array}} \right| = 0\)
\(\Rightarrow \frac{1}{2}\left[ {x\left( {2 - 6} \right) - y\left( {1 - 3} \right) + 1\left( {6 - 6} \right)} \right] = 0\)
\(\Rightarrow - 4x + 2y = 0\)
\(\Rightarrow - 2x + y = 0\)
\( \Rightarrow y = 2x\) which is required line.
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct12
Incorrect0
Watch More Related Solutions
If  \(A = \left| {\begin{array}{*{20}{c}} 2&{ - 3}&5 \\ 6&0&4 \\ 1&5&{ - 7} \end{array}} \right|,\)Verify that det A = det (A')
Solve the system of linear equation, using matrix method x - y + z = 4; 2x + y - 3z = 0; x + y + z = 2
Solve the system of equations \(\begin{aligned} &2 x+5 y=1\\ &3 x+2 y=7 \end{aligned}\)
By using properties of determinant, show that \(\left| {\begin{array}{*{20}{c}} {x + y + 2z}&x&y \\ z&{y + z + 2x}&y \\ z&x&{z + x + 2y} \end{array}} \right| = 2{\left( {x + y + z} \right)^3}\)
If \(A = \left[ {\begin{array}{*{20}{c}} 1&2 \\ 4&2 \end{array}} \right]\), then show that |2A| = 4|A|
Solve the system of linear equation, using matrix method 2x - y = - 2; 3x + 4y = 3
Using cofactors of elements of third column, evaluate \(\Delta = \left| {\begin{array}{*{20}{c}} 1&x&{yz} \\ 1&y&{zx} \\ 1&z&{xy} \end{array}} \right|\)
Evaluate the determinant \(\Delta=\left|\begin{array}{rrr} {1} & {2} & {4} \\ {-1} & {3} & {0} \\ {4} & {1} & {0} \end{array}\right|\)
Write minors and cofactors of the element of \(\left| {\begin{array}{*{20}{c}} 1&0&4 \\ 3&5&{ - 1} \\ 0&1&2 \end{array}} \right|\)
Find minors and cofactors of the elements a11, a21 in the determinant \(\Delta=\left|\begin{array}{lll} {a_{11}} & {a_{12}} & {a_{13}} \\ {a_{21}} & {a_{22}} & {a_{23}} \\ {a_{31}} & {a_{32}} & {a_{33}} \end{array}\right|\)

Load More