Home/Class 10/Maths/

Question and Answer

Find the area of the shaded region in Fig, if \(ABCD\) is a square of side \(14 cm\) and \(APD\) and \(BPC\) are semicircles.
loading
settings
Speed
00:00
03:40
fullscreen
Find the area of the shaded region in Fig, if \(ABCD\) is a square of side \(14 cm\) and \(APD\) and \(BPC\) are semicircles.
Question: Find the area of the shaded region in Fig, if ABCD is a square of side 14 cm and APD and BPC are semicircles.

Answer

Answer for Find the area of the shaded region in Fig, if ABCD is a square of side 14 cm and APD and BPC are semicircles.
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

Solution for Find the area of the shaded region in Fig, if ABCD is a square of side 14 cm and APD and BPC are semicircles.
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct28
Incorrect0
Watch More Related Solutions
If \(21y5\) is a multiple of \(9\), where \(y\) is a digit, what is the value of \(y\)?
If \(31z5\) is a multiple of \(3\), where \(z\) is a digit, what might be the values of \(z\)?
\( 2\) cubes each of volume \(64\;\;{cm}^{3}\)are joined end to end. Find the surface area of the resulting cuboid.
The following table gives the literacy rate (in percentage) of \(35\) cities. Find the mean literacy rate.
Five cards the ten, jack, queen, king and ace of diamonds, are well-shuffled with their face downwards. One card is then picked up at random.
(i) What is the probability that the card is the queen?
(ii) If the queen is drawn and put aside, what is the probability that the second card picked up is (a) an ace? (b) a queen?
If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes  \(\dfrac{1}{2}\) if we only add 1 to the denominator. What is the fraction?