Home/Class 9/Maths/

Question and Answer

Question

Find six rational numbers between 3 and 4.

Answer

 \(\frac{22}{7}, \frac{23}{7}, \frac{24}{7}, \frac{25}{7}, \frac{26}{7}, \frac{27}{7}\).
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

As we know, in between any two numbers, there are infinite rational numbers.
Since, we have to find \(6 \)rational numbers between \(3 \)and \(4\).
Thus, multiply and divide by any number that is greater than \(6\).
Hence, we take \(7\),
So,\( 3=\frac31 \times \frac{7}{7}=\frac{21}{7}\)
and \( 4=\frac41 \times \frac{7}{7}=\frac{28}{7}\)
Therefore, the \(6\) rational numbers are \(\frac{22}{7}, \frac{23}{7}, \frac{24}{7}, \frac{25}{7}, \frac{26}{7}, \frac{27}{7}\).
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct20
Incorrect0
Watch More Related Solutions
Find five rational numbers between \(\frac {3}{5}\) and \(\frac{4}{5}.\)
State whether the following statement is true or false. Give reasons for your answer:
Every natural number is a whole number.___
\(\int \frac{\sin \frac{5 x}{2}}{\sin \frac{x}{2}} d x \text { is equal to }\) (where, \(C\) is a constant of integration)( )
A. \(2x+\sin x+2\sin 2x+C\)
B. \(x+2\sin x+2\sin 2x+C\)
C. \(x+2\sin x+\sin 2x+C\)
D. \(2x+\sin x+\sin 2x+C\)
State whether the following statement is true or false. Give reason for your answer:
Every integer is a whole number___
State whether the following statement is true or false. Give reason for your answer.
Every rational number is a whole number.___
The integral \(\int \frac {3x^{13}+2x^{11}}{(2x^{4}+3x^{2}+1)^{4}}\;dx\) is equal to (where \(C\) is a constant of integration)( )
A. \(\frac {x^{4}}{6(2x^{4}+3x^{2}+1)^{3}}+C\)
B. \(\frac {x^{12}}{6(2x^{4}+3x^{2}+1)^{3}}+C\)
C. \(\frac {x^{4}}{(2x^{4}+3x^{2}+1)^{3}}+C\)
D. \(\frac {x^{2}}{(2x^{4}+3x^{2}+1)^{3}}+C\)
If \(\int \frac{x+1}{\sqrt{2 x-1}} d x=f(x) \sqrt{2 x-1}+C\) where C is a
constant of integration, then \(f(x)\) is equal to( )
A.  \(\frac {2}{3}(x+2)\)
B.  \(\frac {1}{3}(x+4)\)
C. \(\frac {2}{3}(x-4)\) 
D.  \(\frac {1}{3}(x+1)\)
Locate \(\sqrt {2}\) on the number line.
If \(\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x=A(x)(\sqrt{1-x^{2}})^{m}+C\), for a suitable chosen integer m and a function \(A(x)\), where \(C\) is a constant of integration, then \((A(x))^{m}\) equals( )
A. \(\frac {1}{9x^{4}}\)
B. \(\frac {-1}{3x^{3}}\)
C. \(\frac {-1}{27x^{9}}\)
D. \(\frac {1}{27x^{6}}\)
 Locate \(\sqrt {3}\) on the number line.

Load More