Home/Class 9/Maths/

Question and Answer

Find five rational numbers between \(\frac {3}{5}\) and \(\frac{4}{5}.\)
loading
settings
Speed
00:00
03:51
fullscreen

Question

Find five rational numbers between \(\frac {3}{5}\) and \(\frac{4}{5}.\)

Answer

\(\frac{19}{30}, \frac{20}{30}, \frac{21}{30}, \frac{22}{30}, \frac{23}{30}.\)
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

We have to find five rational numbers between \(\frac 35\)and \(\frac 45\)
To get five rational numbers between two given rational numbers we will multiply and divide them by \(6\).
So, \(\frac{3}{5}=\frac{3}{5} \times \frac{6}{6}=\frac{18}{30}\)
\(\frac{4}{5}=\frac{4}{5} \times \frac{6}{6}=\frac{24}{30}\)
Hence, five rational numbers between \(\frac 35\\)and \(\frac 45 \) are \(\frac{19}{30}, \frac{20}{30}, \frac{21}{30}, \frac{22}{30}, \frac{23}{30}.\)
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct4
Incorrect0
Watch More Related Solutions
State whether the following statement is true or false. Give reasons for your answer:
Every natural number is a whole number.___
\(\int \frac{\sin \frac{5 x}{2}}{\sin \frac{x}{2}} d x \text { is equal to }\) (where, \(C\) is a constant of integration)( )
A. \(2x+\sin x+2\sin 2x+C\)
B. \(x+2\sin x+2\sin 2x+C\)
C. \(x+2\sin x+\sin 2x+C\)
D. \(2x+\sin x+\sin 2x+C\)
State whether the following statement is true or false. Give reason for your answer:
Every integer is a whole number___
State whether the following statement is true or false. Give reason for your answer.
Every rational number is a whole number.___
The integral \(\int \frac {3x^{13}+2x^{11}}{(2x^{4}+3x^{2}+1)^{4}}\;dx\) is equal to (where \(C\) is a constant of integration)( )
A. \(\frac {x^{4}}{6(2x^{4}+3x^{2}+1)^{3}}+C\)
B. \(\frac {x^{12}}{6(2x^{4}+3x^{2}+1)^{3}}+C\)
C. \(\frac {x^{4}}{(2x^{4}+3x^{2}+1)^{3}}+C\)
D. \(\frac {x^{2}}{(2x^{4}+3x^{2}+1)^{3}}+C\)
If \(\int \frac{x+1}{\sqrt{2 x-1}} d x=f(x) \sqrt{2 x-1}+C\) where C is a
constant of integration, then \(f(x)\) is equal to( )
A.  \(\frac {2}{3}(x+2)\)
B.  \(\frac {1}{3}(x+4)\)
C. \(\frac {2}{3}(x-4)\) 
D.  \(\frac {1}{3}(x+1)\)
Locate \(\sqrt {2}\) on the number line.
If \(\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x=A(x)(\sqrt{1-x^{2}})^{m}+C\), for a suitable chosen integer m and a function \(A(x)\), where \(C\) is a constant of integration, then \((A(x))^{m}\) equals( )
A. \(\frac {1}{9x^{4}}\)
B. \(\frac {-1}{3x^{3}}\)
C. \(\frac {-1}{27x^{9}}\)
D. \(\frac {1}{27x^{6}}\)
 Locate \(\sqrt {3}\) on the number line.
Let \(n \geq 2\) be a natural number and \(0<\theta<\frac{\pi}{2} . \text {Then,} \int \frac{\left(\sin ^{n} \theta-\sin \theta\right)^{\frac{1}{n}} \cos \theta}{\sin ^{n+1} \theta} d \theta \text { is equal to }\)
(where \(C\) is a constant of integration)( )
A. \(\frac{n}{n^{2}-1}\left(1-\frac{1}{\sin ^{n+1} \theta}\right)^{\frac{n+1}{n}}+C\)
B. \(\frac{n}{n^{2}-1}\left(1+\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C\)
C. \(\frac{n}{n^{2}-1}\left(1-\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C\)
D. \(\frac{n}{n^{2}+1}\left(1-\frac{1}{\sin ^{n-1} \theta}\right)^{\frac{n+1}{n}}+C\)

Load More