Home/Class 6/Science/

Question and Answer

Correct the following statement and rewrite them:
The number of petals and sepals in a flower is always equal.
loading
settings
Speed
00:00
02:29
fullscreen
Correct the following statement and rewrite them:
The number of petals and sepals in a flower is always equal.

Answer

The number of sepals and petals in a flower is not always equal. It is different. A rose contains \(5\) petals but \(20\) to \(40\) petals.
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct40
Incorrect0
Watch More Related Solutions
The value of \( (co{s}^{2}25°+co{s}^{2}65°)\) is
(A) 0
(B) \( si{n}^{2}40°\)
(C) \( co{s}^{2}40°\)
(D) 1
\( \frac{1}{\sqrt{3}}tan45°=cot\theta ,   \theta \) being on angles \( \theta  \)is
(A) \( 30°\)
(B) \( 45°\)
(C) \( 60°\)
(D) \( 90°\)
If A, B, C are the interior angles of a triangles, then \( tan\left(\frac{B+C}{2}\right)=\)
(A) \( tan\frac{A}{2}\)
(B) \( cot\frac{A}{2}\)
(C) \( sin\frac{A}{2}\)
(D) \( cos\frac{A}{2}\)
The true set of values of '\( K\)' for which \( {sin}^{-1}\left(\frac{1}{1+{sin}^{2}x}\right)=\frac{K\pi }{6}\) may have a solution is
(a) \( \left[\frac{1}{4},\frac{1}{2}\right]\)
(b) \( [1,3]\)
(c) \( \left[\frac{1}{6},\frac{1}{2}\right]\)
(d) \( [2,4]\)
What is the value of \( x\) in the equation
\( \frac{xcose{c}^{2}30°se{c}^{2}45°}{8co{s}^{2}45°si{n}^{2}60°}=ta{n}^{2}60°-ta{n}^{2}30°\)
(A) 1
(B) 2
(C) \( 1∕2\)
(D) \( 3∕2\)
The value of \( 4(si{n}^{4}60°+co{s}^{4}30°)-3(ta{n}^{2}60-tan45°)+5co{s}^{2}45°\)
(A) 1
(B) 0
(C) 2
(D) 3
If \( x=3se{c}^{2}\theta -1,y=ta{n}^{2}\theta -2,\) then \( x-3y\) is equal to
(A) 3
(B) 4
(C) 8
(D) 5
The value of \( \frac{sin\;19°}{cos71°}+\frac{cos73°}{sin17°}\) is
(A) 0
(B) 1
(C) 2
(D) \( 1∕2\)
If a \( cot\theta +b\;cosec\theta =P\) and \( bcot\theta +a\;cosec\theta =q,\) then \( {p}^{2}-{q}^{2}=\)
(A) \( {a}^{2}-{b}^{2}\)
(B) \( {b}^{2}-{a}^{2}\)
(C) \( {a}^{2}+{b}^{2}\)
(D) \( b-a\)
Given that \( tan\left({\theta }_{1}+{\theta }_{2}\right)=\frac{tan{\theta }_{1}+tan{\theta }_{2}}{1-tan{\theta }_{1}+tan{\theta }_{2}},tan{\theta }_{1}=\frac{1}{2}\) and \( tan{\theta }_{2}=\frac{1}{3}\) then \( {\theta }_{1}+{\theta }_{2}\) is equal to
(A) \( 30°\)
(B) \( 45°\)
(C) \( 60°\)
(D) \( 90°\)

Load More