Home/Class 6/Science/

Question and Answer

Correct the following statement and rewrite the correct statement:
If the petals of a flower are joined together, then the pistil is joined to the petal.
loading
settings
Speed
00:00
01:44
fullscreen
Correct the following statement and rewrite the correct statement:
If the petals of a flower are joined together, then the pistil is joined to the petal.

Answer

If the petals of a flower are joined together, then the pistil is not necessarily joined to the petal.
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct3
Incorrect0
Watch More Related Solutions
What is \( \frac{co{t}^{2}\theta -co{s}^{2}\theta }{co{t}^{2}\theta .co{s}^{2}\theta }\) equal to?
Prove that \( \frac{secA-1}{secA+1}={\left(\frac{sinA}{1+cosA}\right)}^{2}\)
Prove that \( \sqrt{\frac{1+sinA}{1-sinA}}=\frac{cotA}{cosecA-1}\)
Prove that \( \frac{sec\theta -tan\theta }{sec\theta +tan\theta }=1-2sec\theta +tan\theta +2ta{n}^{2}\theta \)
If \( sin\theta =\frac{1}{3}\) then find the value of \( (2co{t}^{2}\theta +2)\)
If A, B, C are interior angles of a \( ∆\)ABC, then show that \( cos\frac{\left(B+C\right)}{2}=sin\frac{A}{2}\)
\( \underset{x\xrightarrow{}\;0}{lim}\frac{sin\left(\pi {cos}^{2}\left(tan\right(sinx\left)\right)\right)}{{x}^{2}}=\)
(a) \( \pi \)
(b) \( \frac{\pi }{4}\)
(c) \( \frac{\pi }{2}\)
(d) none of these
If \( sec\theta =\frac{5}{4}\), verify that \( \frac{tan\theta }{1+{tan}^{2}\theta }=\frac{sin\theta }{sec\theta }\)
Prove that \( \frac{tan\theta }{sec\theta -1}-\frac{sin\theta }{1+cos\theta }=2cot\theta \)
If \( tan\theta =\frac{p}{q} \) show that \( \frac{psin\theta -qcos \theta }{psin\theta +qcos\theta  }=\frac{{p}^{2}-{q}^{2}}{{p}^{2}+{q}^{2}}\)

Load More