Home/Class 6/Science/

Question and Answer

Correct the following statement and rewrite:
Roots conduct water to the leaves.
loading
settings
Speed
00:00
01:43
fullscreen
Correct the following statement and rewrite:
Roots conduct water to the leaves.

Answer

Stem conducts water to the leaves not the roots. Roots absorb water from the soil through root hair and transport the water in upward direction in plants.
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct8
Incorrect0
Watch More Related Solutions
If \( 8tanA=15,  \)then the value of \( \frac{sin\theta -cosA}{sin\theta +cosA}\) is
(A) \( \frac{7}{23}\)
(B) \( \frac{11}{23}\)
(C) \( \frac{13}{23}\)
(D) \( \frac{17}{23}\)
If \( \sqrt{3}tan\theta =3sin\theta ,\) then the value of \( si{n}^{2}\theta -co{s}^{2}\theta \) is
(A) \( \frac{1}{2}\)
(B) \( \frac{1}{3}\)
(C) \( \frac{1}{4}\)
(D) \( \frac{1}{5}\)
If a and b are real number such that \( acos\theta +bsin\theta =4\) and \( asin\theta -bcos\theta =3\), then \( {(a}^{2}+{b}^{2})\) is
(A) 7
(B) 12
(C) 25
(D) \( \sqrt{12}\)
The value of \( sin\theta .cos\theta (tan\theta +cot\theta )\) is
(A) 1
(B) 2
(C) -1
(D) 0
If \( sin\theta =\frac{3}{5},\) then the value of \( (tan\theta +sec\theta {)}^{2} \)is
(A) 2
(B) 4
(C) 6
(D) 8
\( tan35°. tan40°.tan45°.tan50°tan55° \) is equal to
(A) 1
(B) 2
(C) 0
(D) 3
If \( tan\theta =\frac{3}{4},\) evaluate \( \frac{4sin\theta -2cos\theta }{4sin\theta +3cos\theta }\) is
(A) \( 1∕3\)
(B) \( 1∕4\)
(C) \( 1∕5\)
(D) \( 1∕6\)
If A is an acute angle and \( tanA=\frac{5}{12}, \)the value of case A is
(A) \( \frac{11}{5}\)
(B) \( \frac{13}{5}\)
(C) \( \frac{16}{5}\)
(D) \( \frac{17}{5}\)
If \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( 4{x}^{2}+2x-1=0\) then the value of \( \sum _{r=1}^{\infty }\left({\alpha }^{r}+{\beta }^{r}\right)\) is:
(a) \( 2\)
(b) \( 3\)
(c) \( 6\)
(d) \( 0\)
\( \frac{cos\left(90°-\theta \right)cos\theta }{tan\theta }+\frac{co{s}^{2}(90°-\theta )}{1}=\)
(A) 0
(B) 1
(C) 2
(D) 3

Load More