Answer: A、B
Let r be the radius drops and \({R}\) of bigger one. Equanting the initial and final volume, we have
\(\frac{{{4}}}{{{3}}}\pi{R}^{{{3}}}={\left({1000}\right)}{\left(\frac{{{4}}}{{{3}}}\pi{r}^{{{3}}}\right)}\)
or, \({R}={10}{r}={\left({10}\right)}{\left({10}^{{-{7}}}\right)}{m}\)
or, \({R}={10}^{{-{6}}}{m}\)
Further, the water drops have only one free surface. Therefore,
\(\Delta{A}={4}\pi{R}^{{{2}}}-{\left({1000}\right)}{\left({4}\pi{r}^{{{2}}}\right)}\)
\(={4}\pi{\left[{\left({10}^{{-{6}}}\right)}^{{{2}}}-{\left({10}^{{{3}}}\right)}{\left({10}^{{-{7}}}\right)}^{{{2}}}\right]}\)
\(=-{36}\pi{\left({10}^{{-{12}}}\right)}{m}^{{{2}}}\)
Here, negative sign implies that surface area is decreasing. Hence, energy released in the process. \({U}={T}{\left|\Delta{A}\right|}={\left({7}\times{10}^{{-{2}}}\right)}{\left({36}\pi\times{10}^{{-{12}}}\right)}{J}\)
\(={7.9}\times{10}^{{-{12}}}{J}\).