Radius of each circular plate, \(R=6.0\;\mathrm{cm}=0.06 \;\text{m}\)
Capacitance of a parallel plate capacitor, \(C=100\;\mathrm{pF}=100\times 10^{-12}\;\text{F}\)
Supply voltage, \(V=230\;\text{V}\)
Angular frequency, \(\omega =300\;\mathrm{rad\;s}^{-1}10^{-11}\)
Rms value of conduction current, \(I=\frac V{X_C}\)
Where,
Capacitive reactance
\(X_C=\frac 1{\mathit{\omega C}}\)
\(\therefore \quad I=V\times \mathit{\omega C}\)
\(=230\times 300\times 100\times 10^{-12}\)
\(=6.9\times 10^{-6}\;\text{A}\)
\(=6.9\;\mu \text{A}\)
Hence, the rms value of conduction current is \(=6.9\;\mu \text{A}.\)