Home/Class 8/Maths/

Question and Answer

A farmer has enough food to feed \(20\) animals in his cattle for \(6\) days. How long would the food last if there were \(10\) more animals in his cattle?
loading
settings
Speed
00:00
02:09
fullscreen

Question

A farmer has enough food to feed \(20\) animals in his cattle for \(6\) days. How long would the food last if there were \(10\) more animals in his cattle?

Answer

\(4\) days
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

Let the number of days be \(x\).
Total number of animals \(= 20 + 10 = 30\)
Solution for A farmer has enough food to feed 20 animals in his cattle for 6 days. How long would the food last if there were 10 more animals in his cattle?
Here the number of animals and the number of days are in inverse proportion.
\(\implies \frac{20}{30}=\frac{x}{6}\)
\(\implies 30 \times x=20 \times 6\)
\(\implies x=\frac{20 \times 6}{30}\)
\(\implies x= 4\)
Hence the food will last for four days.
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct49
Incorrect0
Watch More Related Solutions
An umbrella has \(8\) ribs which are equally spaced. Assuming umbrella to be a flat circle of radius \(45\ cm\), find the area between the two consecutive ribs of the umbrella.
Find the area of the shaded region in Fig, if \(ABCD\) is a square of side \(14 cm\) and \(APD\) and \(BPC\) are semicircles.
If \(21y5\) is a multiple of \(9\), where \(y\) is a digit, what is the value of \(y\)?
If \(31z5\) is a multiple of \(3\), where \(z\) is a digit, what might be the values of \(z\)?
\( 2\) cubes each of volume \(64\;\;{cm}^{3}\)are joined end to end. Find the surface area of the resulting cuboid.
The following table gives the literacy rate (in percentage) of \(35\) cities. Find the mean literacy rate.
Five cards the ten, jack, queen, king and ace of diamonds, are well-shuffled with their face downwards. One card is then picked up at random.
(i) What is the probability that the card is the queen?
(ii) If the queen is drawn and put aside, what is the probability that the second card picked up is (a) an ace? (b) a queen?
If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes  \(\dfrac{1}{2}\) if we only add 1 to the denominator. What is the fraction?