Home/Class 8/Maths/

Question and Answer

Question

Question: Observe the histogram given above. The number of girls having height 145 cm and above is(   )A. 5B. 10C. 17D. 19
Observe the histogram given above. The number of girls having height \(145\ cm\) and above is( )
A. \(5\)
B. \(10\)
C. \(17\)
D. \(19\)

Answer

B
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

From the given histogram:
Heights above \(145\ cm\) are \(150\ cm,160cm\) and \(165\ cm\).
So, the number of girls having height \(145\ cm\) and above is
\(=5+4+1\)
\(=10\\)
Hence, the correct option is B
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct21
Incorrect0
Watch More Related Solutions
If Y = \( \left\{x|x\;is\;a positive\;factor\;of\;the\;number {2}^{p-1}\left({2}^{p}-1\right), where {2}^{p}-is\;a prime\;number\right\}.Write\;Y in\;the\;roaster\;form.\)
If \( y=(x\;sinx+cosx)(x\;cosx-sinx)\) then find \( \frac{dy}{dx}\) .
Let a, b, c and d be non-zero numbers. If the point of intersection of the line \( 4ax+2ay+c=0\) and \( 5bx+2by+d=0\) lies in the fourth quadrant and is equidistant from the two axes then:
(1) \( 2bc-3ad=0\)(2) \( 2bc+3ad=0\)
(3) \( 3bc-2ad=0\)(4) \( 3bc+2ad=0\)
If the sum of n terms of an A.P. is cn\( \left(n - 1\right)\) where c \( \ne\;0 \), then the sum of the squares of these terms is
A.\( {c}^{2}n{\left(n + 1\right)}^{2}\)
B.\( \frac{2}{3}{c}^{2}n\left(n - 1\right)\left(2n - 1\right)\)
C.\( \frac{{2c}^{2}}{3}n\left(n+ 1\right)\left(2n+ 1\right)\)
D.none of these
\( \underset{x\xrightarrow{} \infty }{lim}\frac{{\left(x+1\right)}^{10}{+\left(x+2\right)}^{10}+\cdots +{\left(x+100\right)}^{10}}{{x}^{10}{+10}^{10}}\) is equal to
(a) 0 (b) 1 (c) 10 (d) 100
The equation of the bisector of the acute angle between the lines \( 2x-y+4=0 \)and
\( x-2y=1 \)is
(a) \( x-y+5=0\) (b)\( x-y+1=0\) (c)\( x-y=5\) (d) none of these
Find the derivative of \( tan\sqrt{x}\) w.r.t. x., using first principle
If A and G are respectively arithmetic and geometric mean between positive no. a and b; then the quadratic equation having a, b as its roots is
\( {x}^{2}-2Ax+ {G}^{2}=0\)
If \( \underset{x\xrightarrow{} \infty }{lim}\left(\frac{{x}^{2}+1}{x+1}-ax-b\right)=0 \)then find values of a & b
Write down the sequence whose nth term is \( {2}^{n}/n\) and (ii) \( \left[3+{\left(-1\right)}^{n}\right]/{3}^{n}\)

Load More