Home/Class 10/Maths/

Question and Answer

\( \frac{1}{\sqrt{3}}tan45°=cot\theta ,   \theta \) being on angles \( \theta  \)is
(A) \( 30°\)
(B) \( 45°\)
(C) \( 60°\)
(D) \( 90°\)

Answer

(C)
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

\( \frac{1}{\sqrt{3}}tan45°=cot\theta   \)
\( \frac{1}{\sqrt{3}}\times\;1=cot\theta  \)
\( \frac{1}{\sqrt{3}}=cot\theta  \)
\( cot60°=cot\theta \)
\( \theta =60°\)
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct1
Incorrect0
Watch More Related Solutions
If A, B, C are the interior angles of a triangles, then \( tan\left(\frac{B+C}{2}\right)=\)
(A) \( tan\frac{A}{2}\)
(B) \( cot\frac{A}{2}\)
(C) \( sin\frac{A}{2}\)
(D) \( cos\frac{A}{2}\)
The true set of values of '\( K\)' for which \( {sin}^{-1}\left(\frac{1}{1+{sin}^{2}x}\right)=\frac{K\pi }{6}\) may have a solution is
(a) \( \left[\frac{1}{4},\frac{1}{2}\right]\)
(b) \( [1,3]\)
(c) \( \left[\frac{1}{6},\frac{1}{2}\right]\)
(d) \( [2,4]\)
What is the value of \( x\) in the equation
\( \frac{xcose{c}^{2}30°se{c}^{2}45°}{8co{s}^{2}45°si{n}^{2}60°}=ta{n}^{2}60°-ta{n}^{2}30°\)
(A) 1
(B) 2
(C) \( 1∕2\)
(D) \( 3∕2\)
The value of \( 4(si{n}^{4}60°+co{s}^{4}30°)-3(ta{n}^{2}60-tan45°)+5co{s}^{2}45°\)
(A) 1
(B) 0
(C) 2
(D) 3
If \( x=3se{c}^{2}\theta -1,y=ta{n}^{2}\theta -2,\) then \( x-3y\) is equal to
(A) 3
(B) 4
(C) 8
(D) 5
The value of \( \frac{sin\;19°}{cos71°}+\frac{cos73°}{sin17°}\) is
(A) 0
(B) 1
(C) 2
(D) \( 1∕2\)
If a \( cot\theta +b\;cosec\theta =P\) and \( bcot\theta +a\;cosec\theta =q,\) then \( {p}^{2}-{q}^{2}=\)
(A) \( {a}^{2}-{b}^{2}\)
(B) \( {b}^{2}-{a}^{2}\)
(C) \( {a}^{2}+{b}^{2}\)
(D) \( b-a\)
Given that \( tan\left({\theta }_{1}+{\theta }_{2}\right)=\frac{tan{\theta }_{1}+tan{\theta }_{2}}{1-tan{\theta }_{1}+tan{\theta }_{2}},tan{\theta }_{1}=\frac{1}{2}\) and \( tan{\theta }_{2}=\frac{1}{3}\) then \( {\theta }_{1}+{\theta }_{2}\) is equal to
(A) \( 30°\)
(B) \( 45°\)
(C) \( 60°\)
(D) \( 90°\)
If \( sec4A=cosec (A-20°),\) where 4A is an acute angle, find the value of A.
The number of positive integral values of \( x\) satisfying \( \left[\frac{x}{9}\right]=\left[\frac{x}{11}\right]\) is:
(where \([.]\) denotes greatest integer function)
(a) \( 21\)
(b) \( 22\)
(c) \( 23\)
(d) \( 24\)

Load More