Home/Class 10 Math Chapter List/5. Introduction to Trigonometry/

In(Delta ABC,) right angled at(B,AB=24;cm,BC=7;cm.)Determine (sin A,cos A)

Question

In\(\Delta ABC,\) right angled at\(B,AB=24\;cm,BC=7\;cm.\)
Determine \(\sin A,\cos A\)

Answer

In right angled \(\Delta ABC,\), by using the Pythagoras theorem, we have

\(AC^{2}=AB^{2}+BC^{2}=(24)^{2}+(7)^{2}\)
\(=576+49=625\)
\(\therefore \)\(AC=+25\;cm\) (\(\because\)Side cannot be -ve)
Now,\(\sin A=\frac {P}{H}=\frac {CB}{AC}=\frac {7}{25}\)
and \(\cos A=\frac {B}{H}=\frac {AB}{AC}=\frac {24}{25}\)
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
Correct40
Incorrect0
Watch More Related Solutions
In figure, find \(\tan P-\cot R\).
If \(\sin A=\frac {3}{4},\) calculate \(cos\;A\) and \(tan\;A.\)
Given \(15\;cot\;A=8,\) find \(\sin\;A\) and \(\sec\;A.\)
Given\(\sec \theta =\frac {13}{12}\), calculate all other trigonometric ratios.
If\(\angle A\)and\(\angle B\)are acute angles such that \(\cos A=\cos B,\)
then, show that \(\angle A=\angle B,\)
If \(\cot \theta =\frac {7}{8}\), evaluate : \(\frac {(1+\sin \theta )(1-\sin \theta )}{(1+\cos \theta )(1-\cos \theta )}\)
If \(3\cot A=4\)check whether\(\frac {1-\tan ^{2}A}{1+\tan ^{2}A}=\cos ^{2}A-\sin ^{2}A\)
or not.
In triangle ABC, right angled at B, if\(\tan A=\frac {1}{\sqrt {3}}\) ·find the value of
(i)\(\sin A\cos C+\cos A\sin C\)
(ii) \(\cos A\cos C-\sin A\sin C\)
In\(\Delta PQR,\) right angled at \(Q,PR+QR=25 cm\)
and \(PQ=5 cm\). Determine the values of \(\sin P,\cos P\)and\(\tan P.\)
State whether the following are true or false. Justify your answer.
(i) The value of \(\tan A\)is always less than 1.

Load More