Home/Class 10 Maths Chapter List/4. Triangles/

State whether the following quadrilaterals are similar or not.

State whether the following quadrilaterals are similar or not.


loading
settings
Speed
00:00
02:17
fullscreen
State whether the following quadrilaterals are similar or not.
Question: State whether the following quadrilaterals are similar or not.

Answer

see the solution given below
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

For two figures/shapes to be similar, their sides should be in proportion and their angles should be equal.The two quadrilaterals, in figure are not similar because their corresponding angles are not equal though their sides are in proportion. It is clear from the figure that \(\angle A\) is \(90^{o}\) but\(\angle P\) is not \(90^{o}\).
Note: The two shapes are also different, therefore, they cannot be similar as one is a square and other is a rhombus.
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct45
Incorrect0
Watch More Related Solutions
\( \left(i\right)\)In Figure \( DE\) is parallel to \( BC\) .find \( EC\)

(ii)In figure \( DE\) is parallel to \( BC\) find \(AD\).
\(E\) and \(F\) are points on the sides \(PQ\) and \(PR\) respectively of a \(\Delta PQR,\).If \(PE=3.9\;cm,EQ=3\;cm,PF=3.6\;cm\) and \(FR=2.4\;cm\), state whether \(EF||QR\)
In figure, if\(LM||CB\)and\(LN||CD,\)prove that \(\frac {AM}{AB}=\frac {AN}{AD}\).
In figure,\(DE\parallel AC\)and\(DF\parallel AE\).Prove that\(\frac {BF}{FE}=\frac {BE}{EC}\).
In figure,\(DE\parallel \ OQ\)and\(DF\parallel OR.\)Show that\(EF\parallel QR\).

In figure A, B and C are points on\(OP,OQ\)and\(OR,\)respectively such that\(AB\parallel PQ\)and\(AC\parallel PR, \), Show that\(BC\parallel QR.\)
Using theorem, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side.
Using theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (recall that you done it in Class IX).
ABCD is a trapezium in which\(AB\parallel DC\)and its diagonals intersect each other at the point O. Show that\(\frac {AO}{BO}=\frac {CO}{DO}\).
The diagonals of a quadrilateral\(ABCD\)intersect each other at the point O such that \(\frac {AO}{BO}=\frac {CO}{DO}\).Show that\(ABCD\)is a trapezium.

Load More