Home/Class 10 Maths Chapter List/4. Triangles/

Give two different examples of pair of (i) similar figures.(ii) non-similar figures.

 Give two different examples of pair of
(i) similar figures.
(ii)  non-similar figures.
loading
settings
Speed
00:00
03:45
fullscreen
 Give two different examples of pair of
(i) similar figures.
(ii)  non-similar figures.

Answer

See the solution below.
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Answer, Download the App
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play

Solution

\((i)\) (a)Pair of equilateral triangles are similar figures.
        (b) Pair of squares are similar figures.
Solution for Give two different examples of pair of (i) similar figures.(ii)  non-similar figures.
\((ii)\) (a) A triangle and a quadrilateral form a pair of non-similar figures.
         (b) A square and a trapezium form a pair of non-similar figures.
Solution for Give two different examples of pair of (i) similar figures.(ii)  non-similar figures.
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
To Keep Reading This Solution, Download the APP
4.6
star pngstar pngstar pngstar pngstar png
Review from Google Play
Correct3
Incorrect0
Watch More Related Solutions
State whether the following quadrilaterals are similar or not.


\( \left(i\right)\)In Figure \( DE\) is parallel to \( BC\) .find \( EC\)

(ii)In figure \( DE\) is parallel to \( BC\) find \(AD\).
\(E\) and \(F\) are points on the sides \(PQ\) and \(PR\) respectively of a \(\Delta PQR,\).If \(PE=3.9\;cm,EQ=3\;cm,PF=3.6\;cm\) and \(FR=2.4\;cm\), state whether \(EF||QR\)
In figure, if\(LM||CB\)and\(LN||CD,\)prove that \(\frac {AM}{AB}=\frac {AN}{AD}\).
In figure,\(DE\parallel AC\)and\(DF\parallel AE\).Prove that\(\frac {BF}{FE}=\frac {BE}{EC}\).
In figure,\(DE\parallel \ OQ\)and\(DF\parallel OR.\)Show that\(EF\parallel QR\).

In figure A, B and C are points on\(OP,OQ\)and\(OR,\)respectively such that\(AB\parallel PQ\)and\(AC\parallel PR, \), Show that\(BC\parallel QR.\)
Using theorem, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side.
Using theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (recall that you done it in Class IX).
ABCD is a trapezium in which\(AB\parallel DC\)and its diagonals intersect each other at the point O. Show that\(\frac {AO}{BO}=\frac {CO}{DO}\).

Load More